Skip to main content
Log in

Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory based first-principles investigation study is done on armchair silicene nanoribbons (ASiNRs) for adsorption of uric acid molecule. Pristine and defect-induced variants of ASiNR are considered, and the electronic and transport properties are calculated with the adsorption. The pristine ASiNR with zero band gap is engineered with defect to create a band gap, and a significant change in the band structure of defective ASiNR after the adsorption is observed. The adsorption energy of the defective complex is calculated as − 9.21 eV which is more compared to that of the pristine counterpart, whose adsorption energy comes out to be 7.76 eV. The study shows that introduction of defect reduced the sensitivity of ASiNR toward uric acid molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aghaei SM, Monshi MM, Calizo I (2016). RSC 6:94417

    CAS  Google Scholar 

  2. Akbari E, Buntat Z, Afroozeh A, Pourmand SE, Farhang Y, Sanaati P (2016). RSC 6:81647

    CAS  Google Scholar 

  3. Alesheikh S, Shahtahmassebi N, Roknabadi MR, Shahri RP (2018). Phys Lett A 382:595

    Article  CAS  Google Scholar 

  4. Balendhran S, Walia S, Nili H, Sriram S (2014). Willey 11:640

    Google Scholar 

  5. Chen L, Feng B, Wua K (2013). Appl Phys Lett 102:081602

    Article  Google Scholar 

  6. Dávila ME, Marele A, Padova PD, Montero I, Hennies F, Pietzsch A, Shariati MN, Gómez-Rodríguez JM, Lay GL (2012). Nanotechnology 23:385703

    Article  Google Scholar 

  7. Feng J, Liu Y, Wang H, Zhao J, Cai Q, Wang X (2014). Comput Mater Sci 87:218

    Article  CAS  Google Scholar 

  8. Guzmán-Verr GG, Voon LC (2007). PRB:76

  9. Han D, Han T, Shan C, Ivaska A, Niua L (2010). Electroanalysis 22:2001

    Article  CAS  Google Scholar 

  10. Hu W, Xia N, Wu X, Liab Z, Yang J (2014). Phys Chem Chem Phys 16(15):6957

    Article  CAS  Google Scholar 

  11. Liu C, Feng W, Yao Y (2011). Phys. Rev. Lett. 107:076802. https://doi.org/10.1103/physrevlett.107.076802

  12. Osborn T, Farajian A (2014). Nano Res 7(7):945

    Article  CAS  Google Scholar 

  13. Quantum Wise, Copenhagen, Denmark: Atomistix Toolkit version 2015.0, 2015 Available from http://www.quantumwise.com. Accessed Jan-June 2019

  14. Singh P, Randhawa DKK, Tarun, Chaudhary BC, Walia GK, Kaur N (2020). J Mol Model. https://doi.org/10.1007/s00894-019-4243-9

  15. Takeda K, Shiraishi K (1994). PRB. 50:14916

    Article  CAS  Google Scholar 

  16. Tsai W, Huang C, Chang T, Lin H, Jeng H-T, Bansil A (2013). NCBI 4(1):1500

    Google Scholar 

  17. Walia GK, Randhawa DKK (2014). Su Sci 670:33

    Article  Google Scholar 

  18. Walia GK, Randhawa DKK (2018). Struct Chem 29:1893

    Article  CAS  Google Scholar 

  19. Walia GK, Randhawa DKK (2018). J Mol:24(4)

  20. Walia GK, Randhawa DKK. Struct.Chem. 29(1):257

  21. Walia GK, Randhawa DKK. J Mol 24:242

  22. Wang X, Li H, Wang (2012). Phys Chem Chem Phys 14(9):3031

    Article  CAS  Google Scholar 

  23. Wella SA, Syaputra M, TDK W, Suprijadi (2016). AIP Conf Proc 1719:030039

    Article  Google Scholar 

  24. Zaminpayma E, Nayebi P (2016). Phys E 84:555

    Article  CAS  Google Scholar 

  25. Zhang Y, Chen Y, Zhou K, Liu C, Zeng J, Li H, Peng Z (2009). IOP Sci 20(18):185504

    Google Scholar 

  26. Zheng B, Zhang C (2012). Nanoscale Res Lett 7:422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deep Kamal Kaur Randhawa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarun, T., Randhawa, D.K.K., Singh, P. et al. Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study. J Mol Model 26, 63 (2020). https://doi.org/10.1007/s00894-020-4313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4313-z

Keywords

Navigation