Skip to main content
Log in

Theoretical study on the stability of the complexes A···BX3 [A = CH3NH3+, NH2CHNH2+, NH2CHOH+; B = Sn2+, Pb2+; X = F, Cl, Br, I]

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interaction of corresponding molecular building blocks of the complexes A···BX3 would provide valuable information to quickly estimate the properties of the solar cell. In this work, the H···X hydrogen bond between the organic cations A+ (CH3NH3+, NH2CHNH2+, NH2CHOH+) and the inorganic anions BX3 (B = Sn2+, Pb2+, X = F, Cl, Br, I) were studied by theoretical calculation at the B3LYP-D3/ma-def2-TZVP level to investigate the stability of the complexes A···BX3. The strength of H···X hydrogen bond is enhanced in the order of NH2CHNH2+ < CH3NH3+ < NH2CHOH+, Sn2+ < Pb2+, and weakened in the order of F > Cl > Br > I, indicating that the complexes A···BX3 enhances with the increase of electron donating ability of B and the decrease of electron donating ability of X, and application of the substituent A = NH2CHOH+ may be effective to enhance the stability of perovskite and replace the toxic metal Pb by Sn.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    Article  CAS  PubMed  Google Scholar 

  2. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon P-N junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    Article  CAS  Google Scholar 

  3. Wang B, Zhang ZG, Ye S, Gao L, Yan T, Bian Z, Huang C, Li Y (2016) Solution-processable cathode buffer layer for high-performance ITO/CuSCN-based planar heterojunction perovskite solar cell. Electrochim Acta 218:263–270

    Article  CAS  Google Scholar 

  4. Congreve DN, Lee J, Thompson NJ, Hontz E, Yost SR, Reusswig PD, Bahlke ME, Reineke S, Van Voorhis T, Baldo MA (2013) External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340:334–337

    Article  CAS  PubMed  Google Scholar 

  5. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  6. Bisquert JJ (2013) The swift surge of perovskite photovoltaics. Phys Chem Lett 4:2597–2598

    Article  CAS  Google Scholar 

  7. Hao F, Stoumpos CC, Duyen Hanh C, Chang RPH, Kanatzidis MG (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics 8:489–494

    Article  CAS  Google Scholar 

  8. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Article  CAS  Google Scholar 

  9. Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4:2423–2429

    Article  CAS  Google Scholar 

  10. Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) In Proc. 210th ECS meeting

  11. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  PubMed  Google Scholar 

  12. Service RF (2016) Perovskite solar cells gear up to go commercial. Science 354:1214–1215

    Article  PubMed  Google Scholar 

  13. Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2017

    Article  CAS  PubMed  Google Scholar 

  14. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347

    Article  CAS  PubMed  Google Scholar 

  15. Giorgi G, Yamashita K (2015) Organic-inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J Mater Chem A 3:8981–8991

    Article  CAS  Google Scholar 

  16. Leguy AM, Frost JM, McMahon AP, Sakai VG, Kochelmann W, Law C, Li X, Foglia F, Walsh A, O’Regan BC, Nelson J, Cabral JT, Barnes PR (2015) The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat Commun 6:7124

    Article  PubMed  Google Scholar 

  17. Kieslich G, Sun S, Cheetham AK (2014) Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem Sci 5:4712–4715

    Article  CAS  Google Scholar 

  18. Kieslich G, Sun S, Cheetham AK (2015) An extended tolerance factor approach for organic-inorganic perovskites. Chem Sci 6:3430–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Ding X, Ren Y, Yang Y, Yong D, Liu X, Alsaedi A, Hayat T, Yao J, Dai S (2018) A star-shaped carbazole-based hole-transporting material with triphenylamine side arms for perovskite solar cells. J Mater Chem C 6:12912–12918

    Article  CAS  Google Scholar 

  20. Mateen M, Arain Z, Liu X, Liu C, Yang Yi Y, Ding Y, Ma S, Ren Y, Wu Y, Tao Ye T, Shi P, Dai S (2019) High-performance mixed-cation mixed-halide perovskite solar cells enabled by a facile intermediate engineering technique. https://doi.org/10.1016/j.jpowsour.2019.227386

  21. Cui P, Wei D, Ji J, Huang H, Jia E, Dou S, Wang T, Wang W, Li M (2019) Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat Energy 4:150–159

    Article  CAS  Google Scholar 

  22. Fang H, Jena P (2016) Molecular origin of properties of organic-inorganic hybrid perovskites: the big picture from small clusters. J Phys Chem Lett 7:1596–1603

    Article  CAS  PubMed  Google Scholar 

  23. Winkler B, Milman V, Lee MH (1998) Pressure-induced change of the stereochemical activity of a lone electron pair. J Chem Phys 108:5506–5509

    Article  CAS  Google Scholar 

  24. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  25. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586

    Article  CAS  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  CAS  PubMed  Google Scholar 

  28. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  29. Tomasi J, Persico MM (1994) Molecular-interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  30. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria, GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT

  32. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. Top Curr Chem 42:95–170

    CAS  Google Scholar 

  33. Politzer P, Daiker K (1981) The force concept in chemistry, chapter 6; B.M. Deb, Ed.; Van Nostrand Reinhold: New York

  34. Politzer P, Murray JS (1991) In reviews in computational chemistry, chapter 7; K. B. Lipkowitz, D. B Boyd. Eds.; VCH Publishers: New York

  35. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  PubMed  Google Scholar 

  36. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. plenum press: New York

  37. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  38. Politzer P, Murray JS, Cohcna MC (2008) σ-Hole bonding between like atoms: a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  PubMed  Google Scholar 

  39. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    Article  CAS  PubMed  Google Scholar 

  40. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: σ-hole. J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  41. Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  PubMed  Google Scholar 

  42. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  PubMed  Google Scholar 

  44. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford university press: Oxford, UK

  45. Popelier PLA (2000) Atoms in molecules: an introduction. UMIST: manchester, UK

  46. Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  47. Mulliken RS (1955) Electronic population analysis on lCAO-MO molecular wave functions. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  48. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  49. Reed AE, Weinstock RB, Weinhold F (1985) Natural-population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  50. Zeng Y, Zhu M, Li X, Zheng S, Meng L (2012) Assessment of intermolecular interactions at three sites of the arylalkyne in phenylacetylene-containing lithium-bonded complexes: ab initio and QTAIM studies. J Comput Chem 33:1321–1327

    Article  CAS  PubMed  Google Scholar 

  51. Zeng Y, Zhu M, Meng L, Zheng S (2011) The role of Pi electrons in the formation of benzene-containing lithium-bonded complexes. Chemphyschem 12:3584–3590

    Article  CAS  PubMed  Google Scholar 

  52. Grabowski S (2011) What is the covalency of hydrogen bonding? J Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  53. Cremer D, Kraka E (1984) Chemical-bonds without bonding electron-density: does the difference electron-density analysis suffice for a description of the chemical-bond. Angew Chem Int Ed 23:627–628

    Article  Google Scholar 

  54. Li Q, Li R, Liu X, Li W, Cheng J (2012) Pnicogen−hydride interaction between FH2X (X=P and As) and HM (M=ZnH, BeH, MgH, Li, and Na). J Phys Chem A 116:2547–2553

    Article  CAS  PubMed  Google Scholar 

  55. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H … F-Y systems. J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  56. Chalifoux AM, Boles GC, Berden G, Oomens J, Armentrout PB (2018) Experimental and theoretical investigations of infrared multiple photon dissociation spectra of arginine complexes with Zn2+ and Cd2+. Phys Chem Chem Phys 20:20712–20725

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 91545122, No. 61704054), the Fundamental Research Funds for the Central Universities (JB2015RCY03, JB2019MS052, JB2017MS056) supported by the fund of North China Electric Power University, and the National Key Research and Development Program of China (2016YFA0202401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xunlei Ding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, W., Lu, F. et al. Theoretical study on the stability of the complexes A···BX3 [A = CH3NH3+, NH2CHNH2+, NH2CHOH+; B = Sn2+, Pb2+; X = F, Cl, Br, I]. J Mol Model 26, 46 (2020). https://doi.org/10.1007/s00894-020-4303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4303-1

Keywords

Navigation