Skip to main content
Log in

Theoretical study on the gas-phase reaction mechanism of ammonia with nitrous oxide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Applications of nitrous oxide (N2O) as an oxidant in green propellants and propulsion systems have attracted a lot of attention. In this study, the reaction pathways for the oxidation of ammonia (NH3) with N2O were studied using the B3LYP/6-31++G** method of density functional theory (DFT). The results reveal that the reaction between N2O and NH3 proceeds through a chain reaction mechanism. N2O reacts with NH3 to form N2 and NH3O first and then NH3O decomposes into NH3 and O. This process corresponds to the apparent reaction N2O+M=N2+O+M (M=NH3), but the energy barrier of the process (183.49 kJ/mol) is much lower than the direct decomposition reaction of N2O=N2+O (279.05 kJ/mol). The O radical produced in this process reacts subsequently with NH3 and N2O to produce more radicals such as NH2, OH, and NO, which will take part in further reactions like NH3+OH=NH2+H2O and NH2+NO=N2+H2O until the reactants are consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Werlingy L, Lauck F, Freudenmann D, Rocke N, Ciezki H, Schlechtriem S (2017) Experimental investigation of the ignition, flame propagation and flashback behavior of a premixed green propellant consisting of N2O and C2H4. 7th European Conference for Aeronautics and Aerospace Sciences

  2. Gohardani AS, Stanojev J, Demairé A, Anflo K, Persson M, Wingborg N, Nilsson C (2014) Green space propulsion: opportunities and prospects. Prog Aerosp Sci. 71:128–149

    Article  Google Scholar 

  3. Grubelich MC, Venkatesh PB, Graziano TJ (2016) Deflagration to detonation transition in nitrous oxide ethylene mixtures and its application to pulsed propulsion systems. AIAA Aerospace Sciences Meeting

  4. Nakamura H, Hasegawa S (2017) Combustion and ignition characteristics of ammonia/air mixtures in a micro flow reactor with a controlled temperature profile. Proc Combust Inst 36(3):4217–4226

  5. Chiuta S, Everson RC, Neomagus HWJP, Gryp P, Bessarabov DG (2013) Reactor technology options for distributed hydrogen generation via ammonia decomposition: a review. Int J Hydrogen Energ 38(35):14968–14991

    Article  CAS  Google Scholar 

  6. Valera-Medina A, Morris S, Runyon J, Pugh DG, Marsh R, Beasley P, Hughes T (2015) Ammonia, methane and hydrogen for gas turbines. Energy Procedia 75:118–123

    Article  CAS  Google Scholar 

  7. Sausa RC, Venizelos DT (2011) Flame structure studies of neat and NH3-doped H2/N2O/Ar flames by laser-induced fluorescence, mass spectrometry, and modeling. Combust Sci Technol. 183(11):1184–1202

    Article  Google Scholar 

  8. Pfahl UJ, Ross MC, Shepherd JE, Asamehmetoglu OP, Nal CU (2000) Flammability limits, ignition energy, and flame speeds in H2-CH4 -NH3-N2O-O2-N2 mixtures. Combust Flame 123(1):140–158

    Article  CAS  Google Scholar 

  9. Armjtage JW, Gray P (1965) Flame speeds and flammability limits in the combustion of ammonia: ternary mixtures with hydrogen, nitric oxide, nitrous oxide or oxygen. Combust Flame 9(2):173–184

    Article  Google Scholar 

  10. Shebeko YN, Trunev AV, Tsarichenko SG, Zaitsev AA (1996) Investigation of concentration limits of flame propagation in ammonia-based gas mixtures. Combust Explo Shock 32(5):477–480

    Article  Google Scholar 

  11. Liu R, Ting SK, Checkel MD (2003) Combustion hazard of mixing ammonia with nitric oxide. J Loss Prevent Proc 16(6):497–506

    Article  Google Scholar 

  12. Mathieu O, Petersen EL (2015) Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry. Combust Flame 162(3):554–570

    Article  CAS  Google Scholar 

  13. Ross SK, Sutherland JW, SzucherngKuo A, Klemm RB (1997) Rate constants for the thermal dissociation of N2O and the O(3P) + N2O reaction. J Phys Chem A 101(6):1104–1116

    Article  CAS  Google Scholar 

  14. Tullin CJ, Goel S, Morihara A, Sarofim AF (1993) Nitrogen oxide (NO and N2O) formation for coal combustion in a fluidized bed: effect of carbon conversion and bed temperature. Energy Fuel 7(6):1847–1853

    Article  Google Scholar 

  15. Leavit SW. Biogeochemistry (2013) An analysis of global change. Eos Transactions American Geophysical Union 79(2):20–20

  16. Venizelos DT, Sausa RC (2000) Detailed chemical kinetics studies of an NH3/N2O/Ar flame by laser-induced fluorescence, mass spectrometry, and modeling. P Combust Inst 28(2):2411–2418

    Article  CAS  Google Scholar 

  17. Zhang X, Shen Q, Chi H, Ma CH (2012) Investigation of selective catalytic reduction of N2O by NH3 over an Fe-mordenite catalyst: reaction mechanism and O2 effect. ACS Catal. 2(4):512–520

    Article  CAS  Google Scholar 

  18. Peeters J, Carl SA, Nguyen MT (2012) Experimental and theoretical study of the reaction of the ethynyl radical with nitrous oxide, C2H + NO. Phys Chem Chem Phys 14(20):7456–7470

    Article  Google Scholar 

  19. Pérez-Ramírez J, Kondratenko EV, Debbagh MN (2005) Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite. J Catal. 233(2):442–452

    Article  Google Scholar 

  20. Mrinal R, Atindra M, Kartha K, Pai RV, Kamble VS, Bharadwaj SR (2010) Mechanism of CO + N2O reaction via transient CO3(2-) species over crystalline Fe-substituted lanthanum titanates. J Phys Chem B 114(20):6943–6953

    Article  Google Scholar 

  21. Karami F, Vahedpour M (2013) Theoretical study on the gas phase reaction mechanism of acetylene with nitrousoxide. Struct Chem 24(5):1513–1526

    Article  CAS  Google Scholar 

  22. Avdeev VI, Ruzankin SF, Zhidomirov GM (2005) Molecular mechanism of direct alkene oxidation with nitrous oxide: DFT analysis. Kinet Catal 46(2):177–188

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C02. Gaussian, Inc., Wallingford

    Google Scholar 

  24. Lide DR (2016) CRC handbook of chemistry and physics. CRC Press

  25. Powell OA, Papas P, Dreyer CB (2011) Flame structure measurements of NO in premixed hydrogen-nitrous oxide flames. P Combust Inst 33:1053–1062

    Article  CAS  Google Scholar 

  26. Mével R, Lafosse F, Chaumeix N (2009) Spherical expanding flames in H-NO-Ar mixtures: flame speed measurements and kinetic modeling. Int J Hydrogen Energ 34:9007–9018

    Article  Google Scholar 

  27. Powell O, Papas P (2015) Flame structure measurements of nitric oxide in hydrocarbon-nitrous-oxide flames. J Propuls Power 28:1052–1059

    Article  Google Scholar 

  28. Huisgen R (1985) ChemInform abstract: 1, 3-dipolar cycloaddition-introduction, survry, mechanism. Chemischer Informations Dienst 16(18). https://doi.org/10.1002/chin.198518341

Download references

Funding

The authors thank the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory (STACPLXXXXXXXX) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiang, R., Xu, S. et al. Theoretical study on the gas-phase reaction mechanism of ammonia with nitrous oxide. J Mol Model 26, 48 (2020). https://doi.org/10.1007/s00894-020-4291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4291-1

Keywords

Navigation