Skip to main content
Log in

Microcanonical insights into the physicochemical stability of the coformulation of insulin with amylin analogues

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Injections of insulin are the main treatment for diabetes, but in the long run this therapy can induce serious drawbacks. This has inspired new drugs able to decrease insulin requirements. For instance, human amylin (hIAPP) is a small hormone cosecreted by pancreatic β-cells with insulin to which is a synergistic partner. However, the high amyloidogenicity of hIAPP precluded it as a therapeutics and led to the design of pramlintide (sIAPP), a chimeric analogue with substitutions (A25P, S28P, and S29P) inherited from the aggregation-resistant rat isoform (rIAPP). Despite sIAPP advantages, it still shares with hIAPP a poorly soluble profile at physiological pH that hampers its mixture with insulin. Recent improvements, as charge-enhanced mutants, have been proposed. For instance, sIAPP+ was screened in silico by purely microcanonical thermostatistical methods and adds to sIAPP an S20R mutation to uplift its solubility. This suggests that such physically inspired computational approach may also be auspicious on devising effective coformulations of insulin with amylin analogues. In this seminal attempt, we make comparative multicanonical simulations of regular acting human insulin coformulated with hIAPP, sIAPP, or sIAPP+. To assess the respective physicochemical stabilities against aggregation, we characterize the structural-phase transitions through the microcanonical thermodynamic formalism and evaluate their time lags using the classical nucleation theory. These results are then correlated with estimates of solvation free energies, modeled by the Poisson-Boltzmann equation, and structural propensities. Experimental essays are compared to our simulations and support our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data may be provided by contacting the corresponding author. Software may be provided by contacting the corresponding author

References

  1. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM (2001) Williams textbook of endocrinology. Elsevier/Saunders; American Diabetes Society: http://www.diabetes.org/

  2. NDC Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387:1513–1530

    Article  Google Scholar 

  3. Lipska KJ, Hirsch IB, Riddle MC (2017) Human insulin for type 2 diabetes an effective, less-expensive option. JAMA 318:23–24

    Article  PubMed  Google Scholar 

  4. Weyer C, Fineman MS, Strobel S, Shen L, Data J, Kolterman OG, Sylvestri MF (2005) Properties of pramlintide and insulin upon mixing. Am J Health-Syst Pharm 62:816–822

    Article  CAS  PubMed  Google Scholar 

  5. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    Article  CAS  PubMed  Google Scholar 

  6. Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akter R, Cao P, Noor H, Ridgway Z, Tu LH, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP (2016) Islet amyloid polypeptide: structure, function, and pathophysiology. Journal of Diabetes Research, Article ID 2798269

  8. Jaikaran ETAS, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537:179–203

    Article  CAS  PubMed  Google Scholar 

  9. Luca S, Yau WM, Leapman R, Tyckom R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46:13505–13522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilead S, Wolfenson H, Gazit E (2006) Molecular mapping of the recognition interface between the islet amyloid polypeptide and insulin. Angew Chem Int Ed 45:6476–6480

    Article  CAS  Google Scholar 

  11. Wei L, Jiang P, Yau YH, Summer H, Shochat SG, Mu Y, Pervushin K (2009) Residual structure in islet amyloid polypeptide mediates its interactions with soluble insulin. Biochemistry 48:2368–2376

    Article  CAS  PubMed  Google Scholar 

  12. Baram M, Gilead S, Gazit E, Miller Y (2018) Mechanistic perspective and functional activity of insulin in amylin aggregation. Chem Sci 9:4244–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bower RL, Hay DL (2016) Amylin structure–function relationships and receptor pharmacology: implications for amylin mimetic drug development. British. J Pharm 173:1883–1898

    CAS  Google Scholar 

  14. Hollander PA, Levy P, Fineman MS, Maggs DG, Shen LZ, Strobel SA, Weyer C, Kolterman OG (2003) Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes. Diabetes Care 26:784–790

    Article  CAS  PubMed  Google Scholar 

  15. Riddle M, Frias J, Zhang B, Holly M, Brown C, Lutz K, Kolterman O (2007) Pramlintide improved glycemic control and reduced weight in patients with type 2 diabetes using basal insulin. Diabetes Care 30:2794–2799

    Article  CAS  PubMed  Google Scholar 

  16. Green J, Goldsbury C, Mini T, Sunderji S, Frey P, Kistler J, Cooper G, Aebi U (2003) Amyloidogenesis of the amylin analogue pramlintide. J Mol Biol 326:1147–1156

    Article  CAS  PubMed  Google Scholar 

  17. da Silva DC, Fontes GN, Erthal LCS, Lima LMTR (2016) Amyloidogenesis of the amylin analogue pramlintide. Biophys Chem 219:1–8

    Article  CAS  PubMed  Google Scholar 

  18. da Silva DC, Lima LMTR (2018) Physico-chemical properties of co-formulated fast-acting insulin with pramlintide. Int J Pharm 547:621–629

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Abedini A, Ruzsicska B, Raleigh DP (2014) Rationally designed, nontoxic, nonamyloidogenic analogues of human islet amyloid polypeptide with improved solubility. Biochemistry 53:5876–5884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao P, Tu LH, Abedini A, Levsh O, Akter R, Patsalo V, Schmidt AM, Raleigh DP (2012) Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue-20. J Mol Biol 421:282–295

    Article  CAS  PubMed  Google Scholar 

  21. Sinesia C, Nascimento CVMF, Lacativa PGS, Lima LMTR (2019) Physico-chemical stability of co-formulation of PEGylated human amylin with insulin. Pharm Dev Technol 24:975–981

    Article  CAS  PubMed  Google Scholar 

  22. Henriksen K, Karsda MA (2020) Supramolecularly stabilized diabetes drugs. Nat Biomed Eng 4:481–482

    Article  CAS  PubMed  Google Scholar 

  23. Smaoui MR, Orland H, Waldispuhl J (2015) Probing the binding affinity of amyloids to reduce toxicity of oligomers in diabetes. Bioinformatics 31:2294–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gross DHE (2001) Microcanonical thermodynamics. World Scientific, Singapore

    Book  Google Scholar 

  25. Bachmann M (2014) Thermodynamics and statistical mechanics of molecular systems. Cambridge University Press, UK

    Book  Google Scholar 

  26. Junghans C, Bachmann M, Janke W (2006) Microcanonical analyses of peptide aggregation processes. Phys Rev Lett 97:218103

    Article  PubMed  Google Scholar 

  27. Frigori RB, Rizzi LG, Alves NA (2013) Microcanonical thermostatistics of coarse-grained proteins with amyloidogenic propensity. J Chem Phys 138:015102

    Article  PubMed  Google Scholar 

  28. Frigori RB (2014) Breakout character of islet amyloid polypeptide hydrophobic mutations at the onset of type-2 diabetes. Phys Rev E: Stat Nonlinear Soft Matter Phys 90:052716

    Article  Google Scholar 

  29. Frigori RB (2017) PHAST: protein-like heteropolymer analysis by statistical thermodynamics. Comput Phys Commun 215:165–172

    Article  CAS  Google Scholar 

  30. Hernandez-Rojas J, Gomez Llorente JM (2008) Microcanonical versus canonical analysis of protein folding. Phys Rev Lett 100:258104

    Article  CAS  PubMed  Google Scholar 

  31. Frigori RB (2017) Be positive: optimizing pramlintide from microcanonical analysis of amylin isoforms. Phys Chem Chem Phys 19:25617–25633

    Article  CAS  PubMed  Google Scholar 

  32. Alves NA, Frigori RB (2018) In silico comparative study of human and porcine amylin. J Phys Chem B 122:10714–10721

    Article  CAS  PubMed  Google Scholar 

  33. Alves NA, Frigori RB (2019) Synergistic long-range effects of mutations underlie aggregation propensities of amylin analogues. J Mol Model 25:263

    Article  PubMed  Google Scholar 

  34. Abedini A, Raleigh DP (2009) A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng Des Select 22:453–459

    Article  CAS  Google Scholar 

  35. Williamson JA, Loria JP, Miranker AD (2009) Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 393:383–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zierenberg J, Marenz MW (2013) Scaling properties of a parallel implementation of the multicanonical algorithm. Comput Phys Commun 184:1155–1160

    Article  CAS  Google Scholar 

  37. Berg BA, Neuhaus T (1991) Multicanonical algorithms for first order phase transitions. Phys Lett B 267:249–253

    Article  Google Scholar 

  38. Meinke JH, Mohanty S, Eisenmenger F, Hansmann UHE (2008) SMMP v. 3.0 — simulating proteins and protein interactions in Python and Fortran. Comput Phys Commun 178:459–470

    Article  CAS  Google Scholar 

  39. Jiang P, Yaşar F, Hansmann UHE (2013) Sampling of protein folding transitions: multicanonical versus replica exchange molecular dynamics. J Chem Theory Comput 9:3816–3825

    Article  CAS  Google Scholar 

  40. Peng E, Todorova N, Yarovsky I (2017) Effects of forcefield and sampling method in all-atom simulations of inherently disordered proteins: application to conformational preferences of human amylin. PLOS One 12:e0186219

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fokin VM, Yuritsyn NS, Zanotto ED (2005) Nucleation theory and applications. Wiley-VCH Verlag GmbH & Co (GER)

  42. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  43. Im W, Beglov D, Roux B (1998) Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput Phys Commun 111:59–75

    Article  CAS  Google Scholar 

  44. Jo S, Vargyas M, Vasko-Szedlar J, Roux B, Im W (2008) PBEQ-solver for online visualization of electrostatic potential of biomolecules. Nucl Acids Res 36:W270–275

    Article  CAS  PubMed  Google Scholar 

  45. Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194

    Article  CAS  PubMed  Google Scholar 

  46. Meinke JH, Hansmann UHE (2007) Aggregation of β-amyloid fragments. J Chem Phys 126:014706–1–5

    Article  PubMed  Google Scholar 

  47. Rizzi LG (2020) Kinetics of first-order phase transitions from microcanonical thermostatistics. J Stat Mech 8:083204–22

    Article  Google Scholar 

  48. Hojjati H, Rohani S (2006) Measurement and prediction of solubility of paracetamol in water-isopropanol solution. Org Process Res Dev 10:1110–1118

    Article  CAS  Google Scholar 

  49. Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Brazilian National Laboratory for Scientific Computing (LNCC) is acknowledged by supercomputing time granted at the Santos Dumont facility under project PHAST2. We thank both anonymous reviewers for constructive comments.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

F.R. computer simulations and data analysis. R.B.F. study design, computer simulations, data analysis, and wrote the article.

Corresponding author

Correspondence to Rafael B. Frigori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Trustworthy estimating the multicanonical parameters \(\left \{ {\upbeta }_{k},\alpha _{k}\right \} \) for complex oligomeric systems is well-known to be a cumbersome task in serial simulations. We overcome this numerical hindrance by performing massive parallel simulations with the MUCA algorithm devised in [31, 36]. Thus, it would be interesting to provide an illustrative example of how fast the convergence may be established. Figure 5 presents, for a system composed by insulin in a coformulation with sIAPP+, the microcanonical entropy \(S\left (\varepsilon \right )\) defined by Eq. 3 as a function of the number of sweeps. Multicanonical parameters are updated every 120k Monte Carlo sweeps, sampled in parallel with 1200 CPUs. The simulation clearly converged for the whole energetic range of interest (i.e., − 5.0 ≤ ε ≤− 4.0) after nearly 5M sweeps, since then \(S\left (\varepsilon \right )\) gets stabilized. To further ensure the convergence and collect configurations, we accomplished 15M sweeps. Moreover, once the entropy is established the whole microcanonical thermodynamics is derived by the PHAST package [29].

Fig. 5
figure 5

The numerical convergence of the microcanonical entropy \(S\left (\varepsilon \right )\) of the system composed by insulin coformulated with sIAPP+as a function of the multicanonical iterations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frigori, R.B., Rodrigues, F. Microcanonical insights into the physicochemical stability of the coformulation of insulin with amylin analogues. J Mol Model 27, 28 (2021). https://doi.org/10.1007/s00894-020-04617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04617-9

Keywords

Navigation