Skip to main content

Advertisement

Log in

DFT and molecular docking studies of self-assembly of sulfone analogues and graphene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Detection and qualification process related to impurities assume importance in pharmacological drug development programs, and the present article gives the structural and spectral characterization of sulfone derivatives their self-assembly with graphene sheets theoretically. The investigation of adsorption behavior of sulfone compounds can provide valuable information about its reactivity and electronic and structural properties. Three-dimensional electrostatic potential diagrams were mapped. The frontier orbital energies and energy bandgaps of the molecules were computed. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO analysis. Docking was executed to investigate binding areas of chemical compounds. Bioactivity scores show that the pharmacokinetic and pharmacological properties of the ligands are appropriate leading to be considered potential drug agents. The obtained theoretical wavenumber results of the present study were fully compatible with the experimental results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N’dri JS, Kablan ALC, Ouattara B, Kone MG, Ouattara L, Kodjom CG, Ziao N (2019) QSAR studies .of the antifungal activities of alpha-diaminophosphonates derived from dapsone by DFT method. J Mater Phys Chem 7:1–7

    Google Scholar 

  2. Paniker U, Levine N (2001) Dapsone and sulfapyridine. Dermatol Clin 19:79–86

    PubMed  CAS  Google Scholar 

  3. Chiodini P (1987) The chemoprophylaxis of malaria. J Antimicrob Chemother 20:297–302

    PubMed  CAS  Google Scholar 

  4. Powell R, DeGowin R, Eppes R, McNamara J, Carson P (1967) The antimalarial and hemolytic properties of 4,4′-diaminodiphenylsulfone (DDS). Int J Lepr Other Mycobact Dis 35:590–604

    PubMed  CAS  Google Scholar 

  5. Lee B, Medina I, Benowitz N (1989) Dapsone, trimethoprim and sulfamethoxazole plasma levels during treatment of Pneumocystic carinii pneumonia in patients with the acquired immunodeficiency syndrome (AIDS): evidence of drug interactions. Ann Intern Med 110:606–611

    PubMed  CAS  Google Scholar 

  6. Hughes W, Smith B (1984) Efficacy of diaminodiphenylsulfone and other drugs in murine penumocystis carinii pneumonitis. Antimicrob Agents Chemother 26:436–440

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Leoung GS, Mills J, Hopewell PC, Hughes W, Wofsy C (1986) Dapsone-trimethoprim for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. Ann Intern Med 105:45–48

    PubMed  CAS  Google Scholar 

  8. Zhu YI, Stiller MI (2001) Dapsone and sulfones in dermatology: overview and update. J Am Acad Dermatol 45:420–434

    PubMed  CAS  Google Scholar 

  9. Wallis L, Gilson RC, Gilson RT (2018) Dapsone for recalcitrant eosinophilic annular erythema: a case report and literature review. Dermatol Ther 8:157–163

    Google Scholar 

  10. Liang SE, Hoffman R, Peterson E, Soter NA (2019) Use of dapsone in the treatment of chronic idiopathic and autoimmune urticaria. JAMA Dermatol 155:90–95

    PubMed  Google Scholar 

  11. Moura SL, Fernandes GFS, Machdo FBC, Ferrao LFA (2020) Theoretical and experimental electronic spectra of neutral, monoprotonated and diprotonated dapsone. Theor Chem Accounts 139:53

    CAS  Google Scholar 

  12. Moura SL, Santos JR, Machado FBC, Kawachi EY, Gerrao LFA (2015) Conductive organic polymers: an electrochemical route for the polymerization of dapsone. J Electroanal Chem 757:230–234

    CAS  Google Scholar 

  13. Chakravarthy MP, Mohana KN, Kumar CBP, Badiea AM (2015) Corrosion inhibition behavior and adsorption characteristics of dapsone derivatives on mild steel in acid medium. Am Chem Sci 8:1–16

    CAS  Google Scholar 

  14. Ravichandran P, Athinarayanan J, Premnath D, Periasamy VS, Alshatwi AA, Vasanthkumar S (2015) Synthesis, molecular docking and biological evaluation of novel 6-(4-(4-aminophenylsulfonyl)phenylamino)-5H-benzo[1]phenothiazin-5-one derivatives. Spectrochim Acta 139:477–487

    Google Scholar 

  15. Fares M, Said MA, Alsherbiny MA, Eladwy RA, Almahli H, Abdel-Aziz MM, Ghabbour HA, Eldehna WM, Abdel-Aziz HA (2016) Synthesis, biological evaluation and molecular docking of certain sulfones as potential nonazole antifungal agents. Molecules 21:114

    PubMed Central  Google Scholar 

  16. Konduru NK, Dey S, Sajid M, Owais M, Ahmed N (2013) Synthesis and antibacterial and antifungal evaluation of chalcone based sulfones and bisulfones. Eur J Med Chem 59:23–30

    PubMed  CAS  Google Scholar 

  17. Ildiz GO, Akyuz S (2012) Conformational analysis and vibrational spectroscopic studies on dapsone. Opt Spectrosc 113:495–504

    CAS  Google Scholar 

  18. Chandran A, Mary YS, Varghese HT, Panicker CY, Pazdera P, Rajendran G, Babu N (2011) FT-IR, FT-Raman spectroscopy and computational study of N-carbamimidoyl-4-{[(E)-((2-hydroxyphenyl)methylidene]amino}benzenesulfonamide. J Mol Struct 992:77–83

    CAS  Google Scholar 

  19. Chandran A, Varghese HT, Mary YS, Panicker CY, Manojkumar TK, Van Alsenoy C, Rajendran G (2012) FT-IR, FT-Raman and computational study of (E)-N-carbamimidoyl-4-((4-methoxybenzylidene)amino)benzenefulfonamide. Spectrochim Acta 92:84–90

    CAS  Google Scholar 

  20. Mary YS, Raju K, Yildiz I, Temiz-Arpaci O, Nogueira HIS, Granadeiro CM, Van Alsenoy C (2012) FT-IR, FT-Raman, SERS and computational study of 5-ethylsulphonyl-2-(o-chlorobenzyl)benzoxazole. Spectrochim Acta 96:617–625

    CAS  Google Scholar 

  21. Chandran A, Varghese HT, Mary YS, Panicker CY, Manojkumar TK, Van Alsenoy C, Rajendran G (2012) Vibrational spectroscopic and quantum chemical calculations of (E)-N-carbamimidoyl-4-((naphthalene-1-yl-methylene)amino)benzene sulfonamide. Spectrochim Acta 87:29–39

    CAS  Google Scholar 

  22. Chandran A, Mary YS, Varghese HT, Panicker CY, Manojkumar TK, Van Alsenoy C (2012) Rajendran G (2012) vibrational spectroscopic study of (E)-4-(benzylideneamino)-N-carbamimidoyl benzene sulfonamide. ISRN Anal Chem. https://doi.org/10.5402/2012/397026

  23. Kostarelos K (2003) Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interf Sci 106:147–168

    CAS  Google Scholar 

  24. Vanesa SC, Jachak A, Hurt RH, Kane BA (2012) Biological interactions of graphene family nano materials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Google Scholar 

  25. Hao Q, Wang B, Bossar JA, Kiraly B, Zeng Y, Ching IK, Jensen L, Werner DH, Huang TJ (2012) Surface enhanced Raman scattering study on graphene coated metallic nano structure substrates. J Phys Chem C 116:7249–7254

    CAS  Google Scholar 

  26. Zhu X, Shi L, Schmidt MS, Boisen A, Hansen O, Zi J, Xiao S, Mortensen NA (2013) Enhanced light matter interactions in graphene covered gold nanovoid arrays. Nano Lett 13:4690–4696

    PubMed  CAS  Google Scholar 

  27. Osvath Z, Deak A, Kertesz K, Molnar G, Vertesy G, Zamb D, Hwng C, Biro LP (2015) The structure and properties of graphene on gold nanoparticles. Nanoscale 7:5503–5509

    PubMed  CAS  Google Scholar 

  28. Ali M, Tit N, Pi XD, Yamani ZH (2019) First principles study on the functionalization of graphene with Fe catalyst for the detection of CO2: effect of catalyst clustering. Appl Surf Sci 502:144153

    Google Scholar 

  29. Santosh R, Kumar V (2019) The structural, electronic, optical and thermodynamical properties of hydrofluorinated graphene: first principle calculations. Sold State Sci 94:70–76

    CAS  Google Scholar 

  30. Sharma V, Kagdada HL, Wang JL, Jha PK (2019) Hydrogen adsorption on pristine and platinum decorated graphene quantum dot, a first principle study. Int J Hydrog Energy 45:23977–23987

    Google Scholar 

  31. Mihalache I, Radoi A, Mihaila M, Munteanu C, Marin A, Danila M, Kusko M, Kusko C (2015) Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots. Electrochim Acta 153:306–315

    CAS  Google Scholar 

  32. Li Y, Li X, Xu Y (2020) Theoretical insights into the effect of pristine, doped and hole graphene on the overall performance of dye sensitized solar cells. Inorg Chem Front 7:157

    CAS  Google Scholar 

  33. Ni J, Quintana M, Song S (2020) Adsorption of small gas molecules on transition metal (Fe, Ni and co, cu) doped graphene : a systematic DFT study. Phys E Low Dimension Syst Nanostruct 116:113768

    CAS  Google Scholar 

  34. Dastani N, Arab A, Raissi H (2020) DFT computational study towards investigating cladribine anticancer drug adsorption on the graphene and functionalized graphene. Struct Chem. https://doi.org/10.1007/s11224-020-01526-8

  35. Zhu H, Xu Z, Xie D, Fang Y (2018) Graphene: fabrication, characterizations, properties and applications. Academic Press, London

    Google Scholar 

  36. Nicolai A, Sumpter BG, Meunier V (2014) Tunaboe water desalination across graphene oxide framework membranes. Phys Chem Chem Phys 16:8646–8654

    PubMed  CAS  Google Scholar 

  37. Martin MJ, May S, Mebberson N, Pendleton P, Vasileve K, Plush SE, Hayball JD (2017) Activted carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. J Carbon Res 3:1–29

    Google Scholar 

  38. Reddy AVB, Moniruzzaman M, Reddy YVM, Madhavi G (2019) Graphene-based nanomaterials for the removal of pharmaceuticals in drinking water sources, in graphene-based nanotechnologies for energy and environmental applications. Pp. 329-358 Elsevier

  39. Al-Jumaili A, Alancherry S, Bazaka K, Jacob M (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066

    PubMed Central  Google Scholar 

  40. Ahamadi R, Sarvestani MRJ, Sadeghi B (2018) Computational study of the fullerene effects on the properties of 16 different drugs: a review. Int J Nano Dimens 9:325–335

    Google Scholar 

  41. Sun Q, Zhang R, Qiu J, Liu R, Xu W (2018) On-surface synthesis of carbon nanostructures. Adv Mater 30:1705630

    Google Scholar 

  42. Jiang Y, Wang J, Malfatti L, Carboni D, Senes N, Innocenzi P (2018) Highly durable graphene mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Appl Surf Sci 450:451–460

    CAS  Google Scholar 

  43. Becke AD (1993) Density functional thermo chemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B37:785–789

    Google Scholar 

  45. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian, HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli, C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., Wallingford CT

  46. Dennington RD, Keith TA, Millam JM (2008) GaussView, Gaussian Inc

  47. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  48. Zhao JY, Zhang Y, Zhu LG (2004) Theoretical studies on vibrational spectra of mixed cyanide-halide complexes of gold(III). J Mol Struct Theochem 671:179–187

    CAS  Google Scholar 

  49. Foresman JB (1996) In: Frisch E (ed) Exploring chemistry with electronic structure methods: a guide to using Gaussian. Gaussian Inc, Pittsburg

    Google Scholar 

  50. Al-Otaibi JS, Mary YS, Mary YS, Thomas R (2019) Quantum mechanical and photovoltaic studies on the cocrystals of hydrochlorothiazide with isonazid and malonamide. J Mol Struct 1197:719–726

    CAS  Google Scholar 

  51. Bio-Rad Laboratories Inc SpectraBase; http://spectrabase.com/. Accessed 25 Sept 2019

  52. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    PubMed  CAS  Google Scholar 

  53. Kaur M, Mary YS, Varghese HT, Panicker CY, Yathirajan HS, Siddegowda MS, Van Alsenoy C (2012) Vibrational spectroscopic, molecular structure, first hyperpolarizability and NBO studies of 4′-methylphenyl-2-carbonitrile. Spectrochim Acta 98:91–99

    CAS  Google Scholar 

  54. Shafieyoon P, Mehdipour E, Mary YS (2019) Synthesis, characterization and biological investigation of glycine based sulfonamide derivative and its complex: vibration assignment, HOMO-LUMO analysis, MEP and molecular docking. J Mol Struct 1181:244–252

    CAS  Google Scholar 

  55. Mary YS, Miniyar PB, Mary YS, Resmi KS, Panicker CY, Armakovic S, Armakovic SJ, Thomas R, Sureshkumar B (2018) Synthesis and spectroscopic study of three new oxadiazole derivatives with detailed computational evaluation of their reactivity and pharmaceutical potential. J Mol Struct 1173:469–480

    CAS  Google Scholar 

  56. Mary YS, Mary YS, Thomas R, Narayana B, Samshuddin S, Sarojini BK, Armakovic S, Armakovic SJ, Pillai GG (2019) Theoretical studies on the structure and various physic-chemical and biological properties of a terphenyl derivative with immense anti-protozoan activity. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2019.1624974

  57. Mary YS, Varghese HT, Panicker CY, Girisha M, Sagar BK, Yathirajan HS, Al-Saadi AA, Van Alsenoy C (2015) Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2,2-diphenyl-4-(piperidin-1yl)butanamide. Spectrochim Acta 150:543–556

    CAS  Google Scholar 

  58. Beegum S, Mary YS, Mary YS, Thomas R, Armakovic S, Armakovic SJ, Zitko J, Dolezal M, Van Alsenoy C (2020) Exploring the detailed spectroscopic characteristics, chemical and biological activity of two cyanopyrazine-2-carboxamide derivatives using experimental and theoretical tools. Spectrochim Acta 224:117414

    CAS  Google Scholar 

  59. Mary YS, Panicker CY, Sapnakumari M, Narayana B, Sarojini BK, Al-Saadi AA, Van Alsenoy C, War JA, Fun HK (2015) Molecular structure, FT-IR, vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-[5-(4-Bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone. Spectrochim Acta 136:473–482

    CAS  Google Scholar 

  60. Sureshkumar B, Mary YS, Panicker CY, Suma S, Armakovic S, Armakovic SJ, Van Alsenoy C, Narayna B (2020) Quinoline derivatives as possible lead compounds for anti-malarial drugs: spectroscopic, DFT and MD study. Arab J Chem 13:632–648

    CAS  Google Scholar 

  61. Zhang T, Wei X, Zuo Y, Chao J (2019) An efficient measure to improve NLO performance by point charge electric field. Optik 182:295–302

    CAS  Google Scholar 

  62. Sheeja SR, Mangalam NA, Kurup MRP, Mary YS, Raju K, Varghese HT, Panicker CY (2010) Vibrational spectroscopic studies and computational study of quinoline-2-carbaldehyde benzoyl hydrazone. J Mol Struct 973:36–46

    CAS  Google Scholar 

  63. Al-Otaibi JS, Mary YS, Mary YS, Panicker CY, Thomas R (2019) Cocrystals of pyrazinamide with p-toluenesulfonic and ferulic acids: DFT investigations and molecular docking studies. J Mol Struct 1175:916–926

    CAS  Google Scholar 

  64. Thomas R, Mary YS, Resmi KS, Narayana B, Sarojini BK, Vijayakumar G, Van Alsenoy C (2019) Two neoteric pyrazole compounds as potential anti-cancer agents:synthesis, electronic structure, physico-chemical properties and docking analysis. J Mol Struct 1181:455–466

    CAS  Google Scholar 

  65. Mary YS, Ertan-Bolelli T, Thomas R, Krishnan AR, Bolelli K, Kasap EN, Onkol T, Yildiz I (2019) Quantum mechanical studies of three aromatic halogen-substituted bioactive sulfonamidobenzoxazole compounds with potential light harvesting properties. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2019.1689405

  66. Mary YS, Yalcin G, Mary YS, Resmi KS, Thomas R, Önkol T, Kasap EN, Yildiz I (2020) Spectroscopic, quantum mechanical studies, ligand protein interactions and photovoltaic efficiency modeling of some bioactive benzothiazolinone acetamide analogs. Chem Pap 74:1957–1964

    CAS  Google Scholar 

  67. Mary YS, Mary YS, Resmi KS, Kumar VS, Thomas R, Sureshkumar B (2019) Detailed quantum mechanical, molecular docking, QSAR prediction, photovoltaic light harvesting effficiency analysis of benzil and its halogenated analogues. Heliyon 5:e02825

    PubMed  PubMed Central  Google Scholar 

  68. Roeges NPG (1994) A guide to the complete interpretation of infrared spectra of organic structures. Wiley Inc, New York

    Google Scholar 

  69. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    CAS  Google Scholar 

  70. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    CAS  Google Scholar 

  71. Jeanmaire DL, Van duyne RP (2006) Surface Raman spectro electrochemistry. J Electroanal Chem Interfacial Electrochem 84:1–20

    Google Scholar 

  72. Smith E, Dent G (2005) Modern Raman spectroscopy – a practical approach. https://doi.org/10.1002/0470011831

  73. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    CAS  Google Scholar 

  74. Nie S, Emory SR (1997) Probing single molecules and single nano particles by surface enhanced Raman scattering. Science 275:1102–1106

    PubMed  CAS  Google Scholar 

  75. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669

    PubMed  CAS  Google Scholar 

  76. Sharma V, Som NN, Pillai SB, Jha PK (2020) Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: a new SERS platform. Spectrochim Acta 224:117352

    CAS  Google Scholar 

  77. Al-Otaibi JS (2020) Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. Spectrochim Acta 235:118333

    CAS  Google Scholar 

  78. Al-Otaibi JS, Almuqrin AH, Mary YS, Mary YS (2020) Comprehensive quantum mechanical studies on three bioactive anastrozole based triazole analogues and their SERS active graphene complex. J Mol Struct 1217:128388

    CAS  Google Scholar 

  79. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748

    PubMed  CAS  Google Scholar 

  80. Hevener KE, Yun MK, Qi J, Kerr ID, Babaoglu K, Hurdel JG, Balakrishnan K, White SW, Lee RE (2010) Structural studies of pterin based inhibitors of dihydropteroate synthase. J Med Chem 53:166–177

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Trott O, Olson AJ (2010) Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FlexX incremental construction algorithm for protein ligand docking. Proteins Struct Funct Genet 37:228–241

    PubMed  CAS  Google Scholar 

  83. Haress NG, Al-Omary F, El-Emam AA, Mary YS, Panicker CY, Al-Saadi AA, War JA, Van Alsenoy C (2015) Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 2-(adamantan—1yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole. Spectrochim Acta 135:973–983

    CAS  Google Scholar 

  84. Mary YS, Varghese HT, Panicker CY, Thiemann T, Al-Saadi AA, Popoola SA, Van Alsenoy C, Jasem YA (2015) Molecular conformational analysis, vibrational spectra, NBO, NLO, HOMO-LUMO and molecular docking studies of ethyl 3-(E)-(anthracen-9-yl)prop-2-enoate based on density functional theory calculations. Spectrochim Acta 150:533–542

    CAS  Google Scholar 

Download references

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sheena Mary.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 48 kb)

ESM 2

(DOCX 4525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Otaibi, J.S., Almuqrin, A.H., Mary, Y.S. et al. DFT and molecular docking studies of self-assembly of sulfone analogues and graphene. J Mol Model 26, 273 (2020). https://doi.org/10.1007/s00894-020-04546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04546-7

Keywords

Navigation