Skip to main content
Log in

Theoretical investigation into the cooperativity effect of 1,4-dimethoxy-d-glucosamine complex with Na+ and H2O

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to explore the essence of the hydration process of chitin or chitosan in the presence of cation, the cooperativity effects between the H-bonding and Na+···molecule interactions in the 1,4-dimethoxy-d-glucosamine (DMGA) complexes with H2O and Na+ were investigated at the B3LYP/6-311++G(d,p), M06-2X/6-311++G(2df,2p), and ωB97X-D/6-311++G(2df,2p) levels. The result shows that the complexes in which Na+ or H2O is bonded simultaneously to the –NH and –OH groups connected to the C3 atom of DMGA are the most stable. The cooperativity and anti-cooperativity effects occur in DMGA···H2O···DMGA and DMGA···Na+···H2O, while only the cooperativities are confirmed in DMGA···Na+···DMGA. The cooperativity occurs in the DMGA···Na+···H2O complexes without the hydration, while the anti-cooperativity occurs in those with the hydration. Furthermore, the cooperativity and anti-cooperativity in DMGA···Na+···H2O are far stronger than those in DMGA···Na+···DMGA or DMGA···H2O···DMGA. Therefore, a deduction is given that the cooperativity and anti-cooperativity effects play an important role in the hydration of chitin or chitosan in the presence of Na+. When only Na+ is linked with –OH and –NH groups of chitosan or chitin, due to the cooperativity effect, the hydration does not occur. When both Na+ and H2O are linked with –OH and –NH groups, the anti-cooperativities are dominant in controlling of the aggregation process of Na+, H2O, chitosan, and chitin, leading to the possible hydration. Atoms in molecules (AIM) analysis confirms the cooperativity and anti-cooperativity effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vijay D, Sastry GN (2010) The cooperativity of cation-π and π-π interactions. Chem. Phys. Lett. 485:235–242

    CAS  Google Scholar 

  2. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem. Rev. 116:2775–2825

    CAS  PubMed  Google Scholar 

  3. Mignon P, Loverix S, Steyaert J, Geerlings P (2005) Influence of the π-π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucl Acids Res 33:1779–1789

    CAS  PubMed  Google Scholar 

  4. Hesselmann A, Jansen G, Schutz M (2006) Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach. J. Am. Chem. Soc. 128:11730–11731

    CAS  PubMed  Google Scholar 

  5. Leist R, Frey JA, Ottiger P, Frey HM, Leutwyler S, Bachorz RA, Klopper W (2007) Nucleobase-fluorobenzene interactions: hydrogen bonding wins over π-stacking. Angew. Chem. Int. Ed. 46:7449–7452

    CAS  Google Scholar 

  6. Hruby SL, Shanks BH (2009) Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. J. Catal. 263:181–188

    CAS  Google Scholar 

  7. Varfolomeev MA, Abaidullina DI, Gainutdinova AZ, Solomonov BN (2010) FTIR study of H-bonds cooperativity in complexes of 1,2-dihydroxybenzene with proton acceptors in aprotic solvents: influence of the intramolecular hydrogen bond. Spectrochim Acta Part A 77:965–972

    Google Scholar 

  8. Garcia-Raso A, Albertí FM, Fiol JJ, Tasada A, Barceló-Oliver M, Molins E, Escudero D, Frontera A, Quiñonero D, Deyà PM (2007) Anion-π interactions in bisadenine derivatives: a combined crystallographic and theoretical study. Inorg. Chem. 46:10724–10735

    CAS  PubMed  Google Scholar 

  9. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Cooperativity in multiple unusual weak bonds. Theor. Chim. Acta 126:1–14

    CAS  Google Scholar 

  10. Hunter CA, Anderson HL (2009) What is cooperativity? Angew Chem Int Ed Engl 48:7488–7499

    CAS  PubMed  Google Scholar 

  11. Ferguson A, Liu Z, Chan HS (2009) Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J. Mol. Biol. 389:619–636

    CAS  PubMed  Google Scholar 

  12. Madeiraa PP, Bessaa A, Loureiro JA, Álvares-Ribeiroc L, Rodrigues AE, Zaslavsky BY (2015) Cooperativity between various types of polar solute–solvent interactions in aqueous media. J. Chromatogr. A 1408:108–117

    Google Scholar 

  13. Zaitseva KV, Varfolomeev MA, Novikov VB, Solomonov BN (2011) Enthalpy of cooperative hydrogen bonding in complexes of tertiary amines with aliphatic alcohols: calorimetric study. J Chem Thermodynamics 43:1083–1090

    CAS  Google Scholar 

  14. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31:603–632

    CAS  Google Scholar 

  15. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34:641–678

    CAS  Google Scholar 

  16. Wysokowski M, Petrenko I, Stelling AL, Stawski D, Jesionowski T, Ehrlich H (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265

    Google Scholar 

  17. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    PubMed  Google Scholar 

  18. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206

    CAS  Google Scholar 

  19. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941–3994

    CAS  PubMed  Google Scholar 

  20. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    CAS  PubMed  Google Scholar 

  21. Sinko R, Qin X, Keten S (2015) Interfacial mechanics of cellulose nanocrystals. MRS Bull. 40:340–348

    CAS  Google Scholar 

  22. Chybczyńska K, Markiewicz E, Grząbka-Zasadzińska A, Borysiak S (2019) Dielectric, magnetic, and mechanical properties of composites consisting of biopolymer chitosan matrix and hybrid spinel/cellulose filler. Ceram. Int. 45:9468–9476

    Google Scholar 

  23. Huang Y, Lapitsky Y (2013) Determining the colloidal behavior of ionically crosslinked polyelectrolytes with isothermal titration calorimetry. J. Phys. Chem. B 117:9548–9557

    CAS  PubMed  Google Scholar 

  24. Cai Y, Lapitsky Y (2014) Formation and dissolution of chitosan/pyrophosphate nanoparticles: is the ionic crosslinking of chitosan reversible? Colloid Surface B 115:100–108

    CAS  Google Scholar 

  25. Palomec-Garfias AF, Jardim KV, Sousa MH, Márquez-Beltrán C (2018) Influence of polyelectrolyte chains on surface charge and magnetization of iron oxide nanostructures. Colloid Surface A 549:13–24

    CAS  Google Scholar 

  26. Patra D, Mishra P, Vijayan M, Surolia A (2016) Negative cooperativity and high affinity in chitooligosaccharide binding by a Mycobacterium smegmatis protein containing LysM and lectin domains. Biochemistry 55:49–61

    CAS  PubMed  Google Scholar 

  27. Shilova SV, Tret’yakova AYA, Barabanov VP (2019) Cooperative binding of sodium dodecyl sulfate with chitosan in water-alcohol mixtures. Polym Sci Ser A 61:39–45

    CAS  Google Scholar 

  28. Mikešová J, Hašek J, Tishchenko G, Morganti P (2014) Rheological study of chitosan acetate solutions containing chitinnanofibrils. Carbohyd Polym 112:753–757

    Google Scholar 

  29. Těšínský M, Šimčíková D, Heneberg P (2019) First evidence of changes in enzyme kinetics and stability of glucokinase affected by somatic cancer-associated variations. BBA-Proteins Proteom 1867:213–218

    Google Scholar 

  30. Peña I, Kolesnikova L, Cabezas C, Bermudez C, Berdakin M, Simao A, Alonso JL (2014) The shape of D-glucosamine. Phys. Chem. Chem. Phys. 16:23244–23250

    PubMed  Google Scholar 

  31. Shirahama K (1998) In: Kwak JCT (ed) Polymer-surfactant systems. Marcel Dekker, New York

    Google Scholar 

  32. Deringer VL, Englert U, Dronskowski R (2016) Nature, strength, and cooperativity of the hydrogen-bonding network in α-chitin. Biomacromolecules 17:996–1003

    CAS  PubMed  Google Scholar 

  33. Deringer VL, George J, Dronskowski R, Englert U (2017) Plane-wave density functional theory meets molecular crystals: thermal ellipsoids and intermolecular interactions. Acc. Chem. Res. 50:1231–1239

    CAS  PubMed  Google Scholar 

  34. Madeleine-Perdrillat C, Karbowiak T, Raya J, Gougeon R, Bodart PR, Debeaufort F (2015) Water-induced local ordering of chitosan polymer chains in thin layer films. Carbohyd Polym 118:107–114

    CAS  Google Scholar 

  35. Qiao C, Ma X, Zhang J, Jinshui Yao J (2019) Effect of hydration on water state, glass transition dynamics and crystalline structure in chitosan films. Carbohyd Polym 206:602–608

    CAS  Google Scholar 

  36. Guan L, Xu HY, Huang DH (2011) The investigation on states of water in different hydrophilic polymers by DSC and FTIR. J Poly Res 18:681–689

    CAS  Google Scholar 

  37. Madeleine-Perdrillat C, Karbowiak T, Debeaufort F, Delmotte L, Vaulot C, Champion D (2016) Effect of hydration on molecular dynamics and structure in chitosan films. Food Hydrocolloid 61:57–65

    CAS  Google Scholar 

  38. Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohyd Polym 62:97–103

    CAS  Google Scholar 

  39. Alvarado S, Sandoval G, Palos I, Tellez S, Aguirre-Loredo Y, Velazquez G (2015) The effect of relative humidity on tensile strength and water vapor permeability in chitosan, fish gelatin and transglutaminase edible films. J Food Sci Tech 35:690–695

    Google Scholar 

  40. McDonnell MT, Greeley DA, Kit KM, Keffer DJ (2016) Molecular dynamics simulations of hydration effects on solvation, diffusivity, and permeability in chitosan/chitin films. J. Phys. Chem. B 120:8997–9010

    CAS  PubMed  Google Scholar 

  41. Mano JF (2008) Viscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis. Macromol. Biosci. 8:69–76

    CAS  PubMed  Google Scholar 

  42. Ogawa K, Oka K, Yui T (1993) X-ray study of chitosan-transition metal complexes. Chem. Mater. 5:726–728

    CAS  Google Scholar 

  43. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30:5849–5855

    CAS  Google Scholar 

  44. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 120:215–241

    CAS  Google Scholar 

  45. Mardirossian N, Head-Gordon M (2016) ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144:214110

    PubMed  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Inc. Wallingford CT, USA

    Google Scholar 

  47. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  48. Duijineveldt FB, Duijineveldt-van de Rijdt JCMV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem. Rev. 94:1873–1885

    Google Scholar 

  49. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the difference of separate total energies. Some procedures with reduced errors. Mol. Phys. 19:553–566

    CAS  Google Scholar 

  50. Yui T, Imada K, Okuyama K, Obata Y, Suzuki K, Ogawa K (1994) Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27:7601–7605

    CAS  Google Scholar 

  51. Sikorski P, Hori R, Wada M (2009) Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 10:1100–1105

    CAS  PubMed  Google Scholar 

  52. Reed AE, Curtis LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88:899–926

    CAS  Google Scholar 

  53. Gorshkova MY, Volkova IF, Izumrudov VA (2010) Nonstoichiometric polyelectrolyte complexes of chitosan soluble in neutral solutions. Polym Sci Ser A 52:368–373

    Google Scholar 

  54. Rogina A, Lončarević A, Antunović M, Marijanović I, Ivanković M, Ivanković H (2019) Tuning physicochemical and biological properties of chitosan through complexation with transition metal ions. Int. J. Biol. Macromol. 129:645–652

    CAS  PubMed  Google Scholar 

  55. Terreux R, Domard M, Viton C, Domard A (2006) Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation. Biomacromolecules 7:31–37

    CAS  PubMed  Google Scholar 

  56. Gomes JRB, Jorge M, Gomes P (2014) Interaction of chitosan and chitin with Ni, cu and Zn ions: a computational study. J. Chem. Thermodyn. 73:121–129

    CAS  Google Scholar 

  57. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    CAS  Google Scholar 

  58. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115:2315–2372

    CAS  Google Scholar 

  59. Jiang L, Bai P, Ren F, Wang J, Liu B, Li Y (2020) Theoretical evaluation to improve the performance of composite wax powder: cooperativity effects involving the strong Na+···π/σ and weak hydrogen-bonding interactions in the complex of graphene oxide with Na+ and CH4. Mol Phys 118, In press. https://doi.org/10.1080/00268976.2019.1612106

  60. Domard A (1986) pH and c.d. measurements on a fully deacetylated chitosan: application to CuII-polymer interactions. Int. J. Biol. Macromol. 9:98–104

    Google Scholar 

  61. Schlick SH (1986) Binding sites of Cu2+ in chitin and chitosan. An electron spin resonance study. Macromolecules 19:192–195

    CAS  Google Scholar 

  62. Escudero D, Frontera A, Quiñonero D, Deyà PM (2008) Interplay between cation–π and H-bonding interactions. Chem. Phys. Lett. 456:257–261

    CAS  Google Scholar 

  63. Yan Y, Shi W, Ren F, Wang Y (2012) A B3LYP and MP2(full) theoretical investigation on the cooperativity effect between cation-molecule and hydrogen-bonding interactions in the O-cresol complex with Na+. Comput Theor Chem 996:91–102

    CAS  Google Scholar 

  64. Zhao GM, Liu YC, Shi WJ, Chai T, Qin SD (2014) A theoretical investigation into the cooperativity effect involving anionic hydrogen bond, thermodynamic property and aromaticity in Cl···benzonitrile···H2O ternary complex. Comput Theor Chem 1035:76–83

    CAS  Google Scholar 

  65. Zabardasti A, Zare N, Arabpour M (2011) Theoretical study of dihydrogen bonded clusters of water with tetrahydroborate. Structl Chem 22:691–695

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-an Zhao.

Ethics declarations

Ethical statement

We allow the journal to review all the data, and we confirm the validity of results. There is none as regards financial relationships. This work was not published previously and it is not submitted to more than one journal. It is also not split up into several parts for submission. No data have been fabricated or manipulated.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Interaction energies of the binary systems DMGA···H2O, DMGA···Na+, Na+···H2O and DMGA···DMGA at three levels of theory, the optimized geometries of the binary systems DMGA···DMGA, DMGA···H2O, DMGA···Na+ and ternary systems DMGA···H2O···DMGA, DMGA···Na+···DMGA, DMGA···Na+···H2O as well as their AIM results at the B3LYP/6-311++G(d,p) level are collected in Supplementary data. (DOC 6110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ja., Ren, Fd. Theoretical investigation into the cooperativity effect of 1,4-dimethoxy-d-glucosamine complex with Na+ and H2O. J Mol Model 26, 203 (2020). https://doi.org/10.1007/s00894-020-04461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04461-x

Keywords

Navigation