Skip to main content
Log in

Investigation of nanoparticle–polymer interaction in bio-based nanosilica-filled PLA/NR nanocomposites: molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation, by employing the COMPASS force field, was utilized to investigate structural and thermal characteristics as well as interfacial interactions between components of nanocomposite consisting of poly(lactic acid) (PLA)/natural rubber (NR)/nanosilica, abbreviated as PSxN, where 1 ≤ x ≤ 7 and it represents the parts of SiO2 nanoparticles added to the PLA/NR (PN) blend. Analysis of the obtained results including density (ρ), fractional free volume (FFV), glass transition temperature (Tg), interaction energy (Einteraction), and radial distribution function (RDF) of these nanocomposites was performed. Comparing Einteraction of nanocomposites with that of the PN blend showed that the interactions between the chains of the two polymers are highly dependent on the added amounts of silica nanoparticles, so that by adding silica to the PN blend to obtain PS1N and PS3N nanocomposites, the amount of Einteraction was reduced to a smaller positive value, which indicates the tendency of the nanocomposite’s components to interact with each other. By further addition of silica nanoparticles to have PS5N and PS7N nanocomposites and then by analysis of the RDF results, it was found that the nanoparticles were not well dispersed in these two nanocomposites and they were accumulated in the NR rubbery phase. Therefore, the percolation threshold for silica loading on the PN blend is at most 3 parts (x = 3). These results as well as the other obtained simulation results were compared with the available experimental data, and the agreement observed between them approved the simulation procedure and validated the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Esmizadeh E, Sadeghi T, Vahidifar A, Naderi G, Ghoreishy MHR, Paran SMR (2019) Nano graphene-reinforced bio-nanocomposites based on NR/PLA: the morphological, thermal and rheological perspective. J Polym Environ 27:1529–1541

    CAS  Google Scholar 

  2. Nematollahi M, Jalali-Arani A, Modarress H (2019) High-performance bio-based poly(lactic acid)/natural rubber/epoxidized natural rubber blends: effect of epoxidized natural rubber on microstructure, toughness and static and dynamic mechanical properties. Polym Int 68:439–446

    CAS  Google Scholar 

  3. Nematollahi M, Jalali-Arani A, Modarress H (2019) Effect of nanoparticle localization on the rheology, morphology and toughness of nanocomposites based on poly(lactic acid)/natural rubber/nanosilica. Polym Int 68:779–787

    CAS  Google Scholar 

  4. Muiruri JK, Liu S, Yeo JCC, Koh JJ, Kong J, Thitsartarn W, Teo WS et al (2019) Synergistic toughening of poly(lactic acid)–cellulose nanocrystal composites through cooperative effect of cavitation and crazing deformation mechanisms. ACS Appl Polym Matter 1:509–518

    CAS  Google Scholar 

  5. Takkalkar P, Ganapathi M, Dekiwadia C, Nizamuddin S, Griffin G, Kao N (2019) Preparation of square-shaped starch nanocrystals/polylactic acid based bio-nanocomposites: morphological, structural, thermal and rheological properties. Waste Biomass Valor 10:3197–3211

    CAS  Google Scholar 

  6. Taranamai P, Phinyocheep P, Panbangred W, Janhom M, Daniel P (2019) Antibacterial activity of sustainable composites derived from epoxidized natural rubber/silver-substituted zeolite/poly(lactic acid) blends. J Mater Sci 54:10389–10409

    CAS  Google Scholar 

  7. Munim SA, Raza ZA (2019) Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J Porous Mater 26:881–901

    CAS  Google Scholar 

  8. Fan J, Cao L, Huang J, Yuan D, Chen Y (2019) The construction and verification of toughening model and formula of binary poly(lactic acid)-based TPV with co-continuous structure. Mater Chem Phys 231:95–104

    CAS  Google Scholar 

  9. Nematollahi M, Jalali-Arani A, Golzar K (2014) Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference. Appl Clay Sci 97:187–199

    Google Scholar 

  10. Nematollahi M, Jalali-Arani A (2014) The use of waste rubber in natural rubber in the presence of maleic anhydride-grafted natural rubber (MA-g-NR): study on curing, rheology, morphology, and properties of the blend. J Polym Eng 34:33–40

    CAS  Google Scholar 

  11. Golzar K, Amjad-Iranagh S, Amani M, Modarress H (2014) Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes. J Membr Sci 451:117–134

    CAS  Google Scholar 

  12. Materials Studio [client software] (2013) Revision 6.0. San Diego, CA: Accelrys Inc. http://accelrys.com/products/materials-studio

  13. Golzar K, Modarress H, Amjad-Iranagh S (2017) Effect of pristine and functionalized single-and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. J Mol Model 23:266

    PubMed  Google Scholar 

  14. Golzar K, Modarress H, Amjad-Iranagh S (2017) Separation of gases by using pristine, composite and nanocomposite polymeric membranes: a molecular dynamics simulation study. J Membr Sci 539:238–256

    CAS  Google Scholar 

  15. Faragi S, Hamedani A, Alahyarizadeh G, Minuchehr A, Aghaie M, Arab B (2019) Mechanical properties of carbon nanotube- and graphene-reinforced Araldite LY/Aradur HY 5052 resin epoxy composites: a molecular dynamics study. J Mol Model 25:191

    PubMed  CAS  Google Scholar 

  16. Wei M, Xu P, Yuan Y, Tian X, Sun J, Lin J (2018) Molecular dynamics simulation on the mechanical properties of natural-rubber-graft-rigid-polymer/rigid-polymer systems. Phys Chem Chem Phys 20:8228–8240

    PubMed  CAS  Google Scholar 

  17. Zhao R, Wang Y, Gong X (2020) Influence of the interfacial interaction strength on the viscoelasticity of hard–soft block copolymer based nanocomposites: a molecular dynamics simulation study. Phys Chem Chem Phys 22:3897–3905

    PubMed  CAS  Google Scholar 

  18. Amani M, Amjad-Iranagh S, Golzar K, Sadeghi GMM, Modarress H (2014) Study of nanostructure characterizations and gas separation properties of poly(urethane–urea)s membranes by molecular dynamics simulation. J Membr Sci 462:28–41

    CAS  Google Scholar 

  19. Amjad-Iranagh S, Golzar K, Modarress H (2014) Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 20:2119

    PubMed  Google Scholar 

  20. Singh A, Kumar D (2018) Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations. J Mol Model 24:178

    PubMed  Google Scholar 

  21. Chakraborty S, Lim FC, Ye J (2019) Achieving an optimal Tg change by elucidating the polymer–nanoparticle interface: a molecular dynamics simulation study of the poly(vinyl alcohol)–silica nanocomposite system. J Phys Chem C 123:23995–24006

    CAS  Google Scholar 

  22. Zhou R, Gao W, Xia L, Wu H, Guo S (2018) The study of damping property and mechanism of thermoplastic polyurethane/phenolic resin through a combined experiment and molecular dynamics simulation. J Mater Sci 53:9350–9362

    CAS  Google Scholar 

  23. Wu L, Keer LM, Lu J, Song B, Gu L (2018) Molecular dynamics simulations of the rheological properties of graphene–PAO nanofluids. J Mater Sci 53:15969–15976

    CAS  Google Scholar 

  24. Subramanian N, Koo B, Rai A, Chattopadhyay A (2018) Molecular dynamics-based multiscale damage initiation model for CNT/epoxy nanopolymers. J Mater Sci 53:2604–2617

    CAS  Google Scholar 

  25. Klonos P, Bolbukh Y, Koutsiara C, Zafeiris K, Kalogeri O, Sternik D, Deryło-Marczewska A et al (2018) Morphology and molecular dynamics investigation of low molecular weight PDMS adsorbed onto Stöber, fumed, and sol-gel silica nanoparticles. Polymer 148:1–13

    CAS  Google Scholar 

  26. Dai S, Liu Y, Huang Z, Zhao X (2018) Molecular dynamics simulations on the interaction between microsphere and water in nanosilica/crosslinked polyacrylamide microsphere aqueous solution with a core–shell structure and its swelling behavior. Compos Interfaces 25:69–92

    CAS  Google Scholar 

  27. Cai F, You G, Zhao X, Hu H, Wu S (2019) The relationship between specific structure and gas permeability of bromobutyl rubber: a combination of experiments and molecular simulations. Macromol Theory Simul 1900025

  28. Chowdhury SC, Gillespie JW (2017) Silica–silane coupling agent interphase properties using molecular dynamics simulations. J Mater Sci 52:12981–12998

    CAS  Google Scholar 

  29. Liu F, Hu N, Ning H, Liu Y, Li Y, Wu L (2015) Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput Mater Sci 108:160–167

    CAS  Google Scholar 

  30. Zhang H-p LX, Leng Y, Fang L, Qu S, Feng B, Weng J et al (2009) Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomater 5:1169–1181

    PubMed  Google Scholar 

  31. Chawla R, Sharma S (2018) A molecular dynamics study on Young’s modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber. J Mol Model 24:96

    PubMed  Google Scholar 

  32. Zheng Z, Li F, Liu J, Pastore R, Raos G, Wu Y, Zhang L (2018) Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations. Soft Matter 14:1219–1226

    PubMed  CAS  Google Scholar 

  33. Lei G, Liu H (2018) Thermal transport properties of graphene nanotube and carbon nanotube hybrid structure: nonequilibrium molecular dynamics simulations. J Mater Sci 53:1310–1317

    CAS  Google Scholar 

  34. Wei Q, Zhang Y, Wang Y, Yang M (2017) A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J Mater Sci 52:12889–12901

    CAS  Google Scholar 

  35. Güryel S, Alonso M, Hajgató B, Dauphin Y, Van Lier G, Geerlings P, De Proft F (2017) A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. J Mol Model 23:43

    PubMed  Google Scholar 

  36. O’Driscoll K, Sanayei RA (1991) Chain-length dependence of the glass transition temperature. Macromolecules 24:4479–4480

    Google Scholar 

  37. Chen QP, Chu JD, DeJaco RF, Lodge TP, Siepmann JI (2016) Molecular simulation of olefin oligomer blend phase behavior. Macromolecules 49:3975–3985

    CAS  Google Scholar 

  38. Sorichetti V, Hugouvieux V, Kob W (2018) Structure and dynamics of a polymer–nanoparticle composite: effect of nanoparticle size and volume fraction. Macromolecules 51:5375–5391

    CAS  Google Scholar 

  39. Mora P, Jubsilp C, Liawthanyarat N, Okhawilai M, Rimdusit S (2019) Friction and mechanical properties of highly filled polybenzoxazine composites: nanosilica particle size and surface treatment. Macromol Chem Phys 220:1800328

    Google Scholar 

  40. Yang S, Choi J, Cho M (2012) Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl Mater Interfaces 4:4792–4799

    PubMed  CAS  Google Scholar 

  41. Barbier D, Brown D, Grillet A-C, Neyertz S (2004) Interface between end-functionalized PEO oligomers and a silica nanoparticle studied by molecular dynamics simulations. Macromolecules 37:4695–4710

    CAS  Google Scholar 

  42. Sikdar D, Katti DR, Katti KS (2008) The role of interfacial interactions on the crystallinity and nanomechanical properties of clay–polymer nanocomposites: a molecular dynamics study. J Appl Polym Sci 107:3137–3148

    CAS  Google Scholar 

  43. Bystrov VS, Bdikin IK, Silibin M, Karpinsky D, Kopyl S, Paramonova EV, Goncalves G (2017) Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide. J Mol Model 23:128

    PubMed  Google Scholar 

  44. Rouhi S, Alizadeh Y, Ansari R (2016) On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations. J Mol Model 22:41

    PubMed  CAS  Google Scholar 

  45. Qiao B, Zhao X, Yue D, Zhang L, Wu S (2012) A combined experiment and molecular dynamics simulation study of hydrogen bonds and free volume in nitrile-butadiene rubber/hindered phenol damping mixtures. J Mater Chem 22:12339–12348

    CAS  Google Scholar 

  46. Zhang J, Lou J, Ilias S, Krishnamachari P, Yan J (2008) Thermal properties of poly(lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer 49:2381–2386

    CAS  Google Scholar 

  47. Kucukpinar E, Doruker P (2006) Molecular simulations of gas transport in nitrile rubber and styrene butadiene rubber. Polymer 47:7835–7845

    CAS  Google Scholar 

  48. Luo Y, Qu L, Su H, Chan TW, Wu S (2016) Effect of chemical structure of elastomer on filler dispersion and interactions in silica/solution-polymerized styrene butadiene rubber composites through molecular dynamics simulation. RSC Adv 6:14643–14650

    CAS  Google Scholar 

  49. Al-Ostaz A, Pal G, Mantena PR, Cheng A (2008) Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents. J Mater Sci 43:164–173

    CAS  Google Scholar 

  50. Chauve G, Heux L, Arouini R, Mazeau K (2005) Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy. Biomacromolecules 6:2025–2031

    PubMed  CAS  Google Scholar 

  51. Mandal A, Singh SP, Prasad R (2016) Dynamic mechanical characterization of CNT-PP nanocomposites. J Mol Model 22:66

    PubMed  CAS  Google Scholar 

  52. Wang Y-h, Wang W-h, Zhang Z, Xu L, Li P (2016) Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J 75:36–45

    CAS  Google Scholar 

  53. Liu J, Gao Y, Cao D, Zhang L, Guo Z (2011) Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27:7926–7933

    PubMed  CAS  Google Scholar 

  54. Adnan A, Sun C, Mahfuz H (2007) A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos Sci Technol 67:348–356

    CAS  Google Scholar 

  55. Patel RR, Mohanraj R, Pittman Jr CU (2006) Properties of polystyrene and polymethyl methacrylate copolymers of polyhedral oligomeric silsesquioxanes: a molecular dynamics study. J Polym Sci B Polym Phys 44:234–248

    CAS  Google Scholar 

  56. Chen S, Lv Q, Wang Z, Li C, Pittman CU, Gwaltney SR, Sun S et al (2017) Effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites as surrogates for graphene/polyethylene composites: a molecular dynamics simulation. J Mater Sci 52:5672–5685

    CAS  Google Scholar 

  57. Tsai J-L, Tzeng S-H (2008) Characterizing mechanical properties of particulate nanocomposites using micromechanical approach. J Compos Mater 42:2345–2361

    CAS  Google Scholar 

  58. Ma X, Zhu W, Xiao J, Xiao H (2008) Molecular dynamics study of the structure and performance of simple and double bases propellants. J Hazard Mater 156:201–207

    PubMed  CAS  Google Scholar 

  59. Kossovich EL, Safonov RA (2016) Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale. J Mol Model 22:75

    PubMed  Google Scholar 

  60. Deng L, Zhou N, Tang S, Li Y (2019) Improved Dreiding force field for single layer black phosphorus. Phys Chem Chem Phys 21:16804–16817

    PubMed  CAS  Google Scholar 

  61. Xiang H, Wang Y, Yang W, Hu C, Mu Y, Li J (2010) Study of the mechanical and thermal properties of poly(lactic acid) and poly(ethylene glycol) block copolymer with molecular dynamics. Int J Polym Anal Charact 15:235–244

    CAS  Google Scholar 

  62. Alhabill FN, Ayoob R, Andritsch T, Vaughan AS (2018) Influence of filler/matrix interactions on resin/hardener stoichiometry, molecular dynamics, and particle dispersion of silicon nitride/epoxy nanocomposites. J Mater Sci 53:4144–4158

    CAS  Google Scholar 

  63. Li X, Xiao T, Xiao N (2017) The application of nonlocal theory method in the coarse-grained molecular dynamics simulations of long-chain polylactic acid. Acta Mech Solida Sin 30:630–637

    Google Scholar 

  64. Song M, Zhao X, Li Y, Hu S, Zhang L, Wu S (2014) Molecular dynamics simulations and microscopic analysis of the damping performance of hindered phenol AO-60/nitrile-butadiene rubber composites. RSC Adv 4:6719–6729

    CAS  Google Scholar 

  65. Khosravanian A, Dehghani M, Pazirofteh M, Asghari M, Mohammadi AH, Shahsavari D (2018) Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. Int J Hydrog Energy 43:2803–2816

    CAS  Google Scholar 

  66. Dashti A, Asghari M, Dehghani M, Rezakazemi M, Mohammadi AH, Bhatia SK (2018) Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. J Mol Liq 265:53–68

    CAS  Google Scholar 

  67. Starr FW, Schrøder TB, Glotzer SC (2002) Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35:4481–4492

    CAS  Google Scholar 

  68. Müller-Plathe F (1992) Molecular dynamics simulation of gas transport in amorphous polypropylene. J Chem Phys 96:3200–3205

    Google Scholar 

  69. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392

    PubMed  CAS  Google Scholar 

  70. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) On O2 gas permeability of PP/PLA/clay nanocomposites: a molecular dynamic simulation approach. Polym Test 45:139–151

    CAS  Google Scholar 

  71. Xiang TX, Anderson BD (2014) Water uptake, distribution, and mobility in amorphous poly(d, l-lactide) by molecular dynamics simulation. J Pharm Sci 103:2759–2771

    PubMed  CAS  Google Scholar 

  72. Abu-Sharkh BF (2001) Glass transition temperature of poly(vinylchloride) from molecular dynamics simulation: explicit atom model versus rigid CH2 and CHCl groups model. Comput Theor Polym Sci 11:29–34

    CAS  Google Scholar 

Download references

Acknowledgments

The services of the High Performance Computing cluster of Amirkabir University of Technology are gratefully acknowledged for provision of facilities to perform the simulation runs in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Modarress.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, M., Jalali-Arani, A., Golzar, K. et al. Investigation of nanoparticle–polymer interaction in bio-based nanosilica-filled PLA/NR nanocomposites: molecular dynamics simulation. J Mol Model 26, 230 (2020). https://doi.org/10.1007/s00894-020-04431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04431-3

Keywords

Navigation