Skip to main content
Log in

Thermal Stability and Mechanical Properties of Poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) Modified by Fe2O3 Nanoparticles

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, molecular dynamics (MD) simulation is used to investigate the effect of Fe2O3 nanoparticles (NPs) on the structural and thermomechanical properties of poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) nanocomposites. Five molecular models of pure PHPMA and PHPMA/Fe2O3 nanocomposites with different NP sizes and concentrations were constructed and analyzed. The dynamics of the various models were investigated using mean square displacement (MSD), and their glass transition temperature (Tg) was estimated using both density-temperature and MSD evaluation methods. The results reveal that the presence of Fe2O3 NPs enhances the molecular mobility and flexibility of polymer chains within the PHPMA matrix and decreases their Tg. Additionally, the introduction of Fe2O3 NPs significantly reduces the mechanical properties, such as Young’s and bulk modulus, of the PHPMA polymer. Furthermore, the study demonstrates that the impact of NPs on polymer properties is strongly influenced by NP features; an increase in NP size and concentration correlates with enhanced molecular mobility and flexibility, while Tg and mechanical properties exhibit a negative correlation with these parameters. These findings offer valuable insights into the influence of Fe2O3 nanoparticles on the structural and thermomechanical properties of PHPMA nanocomposites, providing a foundation for optimizing their design and applications across various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Samir, F. Ashour, A. Hakim, M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 6(1), 68 (2022). https://doi.org/10.1038/s41529-022-00277-7

    Article  Google Scholar 

  2. M.S.A. Darwish, M.H. Mostafa, L.M. Al-Harbi, Polymeric nanocomposites for environmental and industrial applications. Int. J. Mol. Sci. 23(3), 1023 (2022). https://doi.org/10.3390/ijms23031023

    Article  Google Scholar 

  3. H. Wu, W.P. Fahy, S. Kim, H. Kim, N. Zhao, L. Pilato, J.H. Koo, Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. 111, 100638 (2020). https://doi.org/10.1016/j.pmatsci.2020.100638

    Article  Google Scholar 

  4. W. Gacitua, A. Ballerini, J. Zhang, Polymer nanocomposites: synthetic and natural fillers a review. Maderas. Cienc. y Tecnol. 7(3), 159–178 (2005). https://doi.org/10.4067/S0718-221X2005000300002

    Article  Google Scholar 

  5. V.M. Bouch Er, D. Cangialosi, A. Alegría, J. Colmenero, I. Pastoriza-Santos, L.M. Liz-Marzan, Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric T g depression. Soft Matter 7(7), 3607–36202011 (2011). https://doi.org/10.1039/C0SM01326A

    Article  ADS  Google Scholar 

  6. S.P. Delcambre, R.A. Riggleman, J.J. de Pablo, P.F. Nealey, Mechanical properties of antiplasticized polymer nanostructures. Soft Matter 6(11), 2475–2483 (2010). https://doi.org/10.1039/B926843J

    Article  ADS  Google Scholar 

  7. W. Caseri, Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol. Rapid Commun. 21(11), 705–722 (2000). https://doi.org/10.1002/1521-3927(20000701)21:11%3C705::AID-MARC705%3E3.0.CO;2-3

    Article  Google Scholar 

  8. M.E. Mackay, T.T. Dao, A. Tuteja, D.L. Ho, B. Van Horn, H.C. Kim, C.J. Hawker, Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2(11), 762–766 (2003). https://doi.org/10.1038/nmat999

    Article  ADS  Google Scholar 

  9. C. Jiang, S. Markutsya, Y. Pikus, V.V. Tsukruk, Freely suspended nanocomposite membranes as highly sensitive sensors. Nat. Mater. 3(10), 721–728 (2004). https://doi.org/10.1038/nmat1212

    Article  ADS  Google Scholar 

  10. J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem. Mater. 13(12), 4649–4654 (2001). https://doi.org/10.1021/cm010451y

    Article  Google Scholar 

  11. G. Polizos, E. Tuncer, A.L. Agapov, D. Stevens, A.P. Sokolov, M.K. Kidder, I. Sauers, Effect of polymer–nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer 53(2), 595–603 (2012). https://doi.org/10.1016/j.polymer.2011.11.050

    Article  Google Scholar 

  12. V.V. Zuev, Y.G. Ivanova, Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers. Polym. Eng. Sci. 52(6), 1206–1211 (2012). https://doi.org/10.1002/pen.22188

    Article  Google Scholar 

  13. K. Wattanakul, H. Manuspiya, N. Yanumet, Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. J. Appl. Polym. Sci. 119(6), 3234–3243 (2011). https://doi.org/10.1002/app.32889

    Article  Google Scholar 

  14. Y. Zhang, S. Park, In-situ modification of nanodiamonds by mercapto-terminated silane agent for enhancing the mechanical interfacial properties of nitrile butadiene rubber nanocomposites. Polym. Compos. 39(10), 3472–3481 (2018). https://doi.org/10.1002/pc.24367

    Article  Google Scholar 

  15. J. Lu, D. Liu, X. Yang, Y. Zhao, H. Liu, H. Tang, F. Gui, Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation. Appl. Surf. Sci. 357, 1114–1121 (2015). https://doi.org/10.1016/j.apsusc.2015.09.142

    Article  ADS  Google Scholar 

  16. J. Wang, T. Hou, Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient. J. Comput. Chem. 32(16), 3505–3519 (2011). https://doi.org/10.1002/jcc.21939

    Article  Google Scholar 

  17. C. Li, A. Strachan, Molecular scale simulations on thermoset polymers: a review. J. Polym. Sci. part B Polym. Phys. 53(2), 103–122 (2015). https://doi.org/10.1002/polb.23489

    Article  ADS  Google Scholar 

  18. H.A.L. Filipe, L.M.S. Loura, Molecular dynamics simulations: advances and applications. Mol. 27(7), 2105 (2022). https://doi.org/10.3390/molecules27072105

    Article  Google Scholar 

  19. Q. Wei, Y. Zhang, Y. Wang, M. Yang, A molecular dynamic simulation method to elucidate the interaction mechanism of nano-SiO2 in polymer blends. J. Mater. Sci. 52(21), 12889–12901 (2017). https://doi.org/10.1007/s10853-017-1330-0

    Article  ADS  Google Scholar 

  20. Y. Wang, W. Wang, Z. Zhang, L. Xu, P. Li, Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur. Polym. J. 75, 36–45 (2016). https://doi.org/10.1016/j.eurpolymj.2015.11.038

    Article  Google Scholar 

  21. M. Nematollahi, A. Jalali-Arani, K. Golzar, H. Modarress, Investigation of nanoparticle–polymer interaction in bio-based nanosilica-filled PLA/NR nanocomposites: molecular dynamics simulation. J. Mol. Model. 26, 1–20 (2020). https://doi.org/10.1007/s00894-020-04431-3

    Article  Google Scholar 

  22. Q. Xie, K. Fu, S. Liang, B. Liu, L. Lu, X. Yang, F. Lü, Micro-structure and thermomechanical properties of crosslinked epoxy composite modified by nano-SiO2: a molecular dynamics simulation. Polymers (Basel). 10(7), 801 (2018). https://doi.org/10.3390/polym10070801

    Article  Google Scholar 

  23. Z. Novy, V. Lobaz, M. Vlk, J. Kozempel, P. Stepanek, M. Popper, M. Petrik, Head-to-head comparison of biological behavior of biocompatible polymers poly (ethylene oxide), poly (2-ethyl-2-oxazoline) and poly [N-(2-hydroxypropyl) methacrylamide] as coating materials for hydroxyapatite nanoparticles in animal solid tumor model. Nanomater. 10(9), 1690 (2020). https://doi.org/10.3390/nano10091690

    Article  Google Scholar 

  24. X. Yang, J. Ruan, C. Ma, B. Hao, X. Huang, G. Lu, C. Feng, Synthesis and self-seeding behavior of oligo (p-phenylene vinylene)-b-poly (N-(2-hydroxypropyl) methacrylamide). Polym. Chem. 10(34), 4718–4731 (2019). https://doi.org/10.1039/C9PY00816K

    Article  Google Scholar 

  25. A. Karatza, P. Klonos, S. Pispas, A. Kyritsis, Glass transition and molecular dynamics in PHPMA-b-POEGMA block copolymers. Polymer (Guildf) 181, 121794 (2019). https://doi.org/10.1016/j.polymer.2019.121794

    Article  Google Scholar 

  26. B.S. Tucker, B.S. Sumerlin, Poly (N-(2-hydroxypropyl) methacrylamide)-based nanotherapeutics. Polym. Chem. 5(5), 1566–1572 (2014). https://doi.org/10.1039/C3PY01279D

    Article  Google Scholar 

  27. L.W. Seymour, R. Duncan, J. Strohalm, J. Kopeček, Effect of molecular weight (M w) of N-(2-hydroxypropyl) methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J. Biomed. Mater. Res. 21(11), 1341–1358 (1987). https://doi.org/10.1002/jbm.820211106

    Article  Google Scholar 

  28. G. Li, M. Zhao, J. Zhang, H. Li, W. Xu, L. Pu, X. Shi, Poly (HPMA)–chlorambucil conjugate nanoparticles: facile fabrication and in vitro anti-cancer activity. New. J. Chem. 18544–18551 (2021). https://doi.org/10.1039/D1NJ03134A

    Article  Google Scholar 

  29. K. Luo, J. Yang, P. Kopečková, J. Kopeček, Biodegradable multiblock poly [N-(2-hydroxypropyl) methacrylamide] via reversible addition− fragmentation chain transfer polymerization and click chemistry. Macromolecules 44(8), 2481–2488 (2011). https://doi.org/10.1021/ma102574e

    Article  ADS  Google Scholar 

  30. D. Mitra, E.-T. Kang, K.G. Neoh, Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications. ACS Appl. Polym. Mater. 3(5), 2233–2263 (2021). https://doi.org/10.1021/acsapm.1c00125

    Article  Google Scholar 

  31. R.M. Al-Nakashli, C. Cao, R. Raveendran, H. Lu, M.H. Stenzel, Increased drug-loading enhances the activity of ellipticine in poly (N-(2-hydroxypropyl) methacrylamide) PHPMA-based polymeric micelles in 2D and 3D cancer cell models. Macromol. Chem. Phys. 224(1), 2200179 (2023). https://doi.org/10.1002/macp.202200179

    Article  Google Scholar 

  32. S. Singh, 2 Polymeric biomaterials in drug-delivery systems. Polym. Biomater. Fabr. Prop. Appl., 2 (2023)

    Google Scholar 

  33. M. Mishra, D.-M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A Gen. 498, 126–141 (2015). https://doi.org/10.1016/j.apcata.2015.03.023

    Article  Google Scholar 

  34. G. Liu, Q. Deng, H. Wang, D.H. Ng, M. Kong, W. Cai, G. Wang, Micro/nanostructured α-Fe2O3 spheres: synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J. Mater. Chem. 22(19), 9704–9713 (2012). https://doi.org/10.1039/C2JM31586F

    Article  Google Scholar 

  35. A. Rahdar, H. Arabi, Preparation of super paramagnetic iron oxide nanoparticles and investigation their magnetic properties. Int. J. Sci. Eng. Invest. 1, 10312–10313 (2012)

    Google Scholar 

  36. N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, S. Ramakrishna, Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials (Basel). 13(20), 4644 (2020). https://doi.org/10.3390/ma13204644

    Article  ADS  Google Scholar 

  37. K.E. Albinali, M.M. Zagho, Y. Deng, A.A. Elzatahry, A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems. Int. J. Nanomedicine. 1707–1723 (2019)

    Article  Google Scholar 

  38. M.C. Goncalves, Sol-gel silica nanoparticles in medicine: a natural choice. Design, synthesis and products. Mol. 23(8), 2021 (2018). https://www.mdpi.com/1420-3049/23/8/2021#

    Article  Google Scholar 

  39. Z. Plichta, Y. Kozak, R. Panchuk, V. Sovolova, M. Epple, L. Kobilynska, D. Horák, Cytotoxicity of doxorubicin-conjugated poly [N-(2-hydroxypropyl) methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells. Beilstein J. Nanotechnol. l9(1), 2533–2545 (2018). https://doi.org/10.3762/bjnano.9.236

    Article  Google Scholar 

  40. A.N. Frone, M.S. Popa, C.D. Usurelu, D.M. Panaitescu, A.R. Gabor, C.A. Nicolae, E. Alexandrescu, Bio-based poly (lactic acid)/poly (butylene sebacate) blends with improved toughness. 14(19), 3998 (2022). https://www.mdpi.com/2073-4360/14/19/3998#

    Google Scholar 

  41. M.D. Bartlett, N. Kazem, J.M. Powell-Palm, X. Huang, W. Sun, J.A. Malen, C. Majidi, High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. 114(9), 2143–2148 (2017). https://doi.org/10.1073/pnas.1616377114

    Article  ADS  Google Scholar 

  42. Accelrys Inc., Accelrys materials studio (Version 7) [Computer software] (Accelrys Inc., San Diego, California, 2014)

    Google Scholar 

  43. J. Yang, X. Gong, G. Wang, Compatibility and mechanical properties of BAMO–AMMO/DIANP composites: a molecular dynamics simulation. Comput. Mater. Sci. 102, 1–6 (2015). https://doi.org/10.1016/j.commatsci.2015.02.010

    Article  Google Scholar 

  44. K. Golzar, H. Modarress, S. Amjad-Iranagh, Effect of pristine and functionalized single-and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. J. Mol. Model. 23, 1–25 (2017). https://doi.org/10.1007/s00894-017-3436-3

    Article  Google Scholar 

  45. S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990). https://doi.org/10.1021/j100389a010

    Article  Google Scholar 

  46. A. Fereidoon, S. Aleaghaee, I. Taraghi, Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: a molecular dynamics simulation. Comput. Mater. Sci. 102, 220–227 (2015). https://doi.org/10.1016/j.commatsci.2015.02.044

    Article  Google Scholar 

  47. A. Benkhelifa, K.E. Boudraa, T. Bouchaour, Enhancement of shape memory properties of thermo-responsive copolymers-based 2-hydroxy propyl methacrylate and n-isobornyl acrylate. J. Therm. Anal. Calorim., 1–16 (2022). https://doi.org/10.1007/s10973-022-11532-z

    Article  Google Scholar 

  48. H.J.C. Berendsen, J.P.M. van Postma, W.F. Van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  Google Scholar 

  49. E. Yildirim, D. Cimen, A. Zengin, T. Caykara, Synthesis of poly (N-(2-hydroxypropyl) methacrylamide) brushes by interface-mediated RAFT polymerization. RSC Adv. 6(51), 45259–45264 (2016). https://doi.org/10.1039/C6RA04189B

    Article  ADS  Google Scholar 

  50. Y. Wang, Q. Wei, S. Wang, W. Chai, Y. Zhang, Structural and water diffusion of poly (acryl amide)/poly (vinyl alcohol) blend films: experiment and molecular dynamics simulations. J. Mol. Graph. Model. 71, 40–49 (2017). https://doi.org/10.1016/j.jmgm.2016.11.001

    Article  Google Scholar 

  51. J.A. Manson, L.H. Sperling, Polymer blends and composites (New York plenum press, New York, 1976)

    Book  Google Scholar 

  52. Y. Fu, L. Liao, L. Yang, Y. Lan, L. Mei, Y. Liu, S. Hu, Molecular dynamics and dissipative particle dynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends. Mol. Simul. 39(5), 415–422 (2013). https://doi.org/10.1080/08927022.2012.738294

    Article  Google Scholar 

  53. I.M. Arenaza, E. Meaurio, B. Coto, J.R. Sarasua, Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends. Polymer 51(19), 4431–4438 (2010). https://doi.org/10.1016/j.polymer.2010.07.018

    Article  Google Scholar 

  54. Y. Wang, Q. Wei, F. Pan, M. Yang, S. Wei, Molecular dynamics simulations for the examination of mechanical properties of hydroxyapatite/poly α-n-butyl cyanoacrylate under additive manufacturing. Biomed. Mater. Eng. 24(1), 825–833 (2014). https://doi.org/10.3233/BME-130874

    Article  Google Scholar 

  55. X. Michalet, Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82(4), 041914 (2010). https://doi.org/10.1103/PhysRevE.82.041914

    Article  ADS  MathSciNet  Google Scholar 

  56. C.-C. Huang, M.-X. Du, B.-Q. Zhang, C.-Y. Liu, Glass transition temperatures of copolymers: molecular origins of deviation from the linear relation. Macromolecules 55(8), 3189–3200 (2022). https://doi.org/10.1021/acs.macromol.1c02287

    Article  ADS  Google Scholar 

  57. M. Mohammadi, J. Davoodi, The glass transition temperature of PMMA: a molecular dynamics study and comparison of various determination methods. Eur. Polym. J. 91, 121–133 (2017). https://doi.org/10.1016/j.eurpolymj.2017.03.056

    Article  Google Scholar 

  58. K. Fu, F. Lü, Q. Xie, H. Ruan, X. Yang, S. Liang, The effects of shape and mass fraction of nano-SiO2 on thermomechanical properties of nano-SiO2/DGEBA/MTHPA composites: a molecular dynamics simulation study. AIP Adv. 10(1), 015339 (2020). https://doi.org/10.1063/1.5135627

    Article  ADS  Google Scholar 

  59. P.W. Tasker, The stability of ionic crystal surfaces. J. Phys. C Solid State Phys. 12(22), 4977 (1979). https://doi.org/10.1088/0022-3719/12/22/036

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Zouati.

Ethics declarations

Ethical Approval

We wish to confirm that there are no known conflicts of interest related to this publication or substantial financial support that would have impacted the research’s findings. We certify that all named authors have read, reviewed, and approved the paper and that no other individuals who meet the requirements for authorship but are not listed have contributed to the work. We also reaffirm that we all approved of the order in which the authors are listed in the manuscript. We certify that the protection of the intellectual property connected to this work has been given careful consideration and that there are no intellectual property-related obstacles to publishing, including the date of publication. By completing this, we attest to having complied with our institutions’ intellectual property rules. We again reaffirm that all relevant bodies have given their ethical approval for all aspects of the research discussed in this publication. We recognize that the corresponding author including the editorial manager and any direct discussions with the office is the only point of contact for the editorial process. He is in charge of informing the other authors of his progress, their submission of corrections, and his final acceptance of the proofs. We certify that the corresponding author can access the email address we gave as being current and accurate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouati, N., Boudraa, K.E. & Lasri, B. Thermal Stability and Mechanical Properties of Poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) Modified by Fe2O3 Nanoparticles. Braz J Phys 54, 65 (2024). https://doi.org/10.1007/s13538-024-01435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01435-9

Keywords

Navigation