Skip to main content
Log in

The potential application of borazine (B3N3)-doped nanographene decorated with halides as anode materials for Li-ion batteries: a first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this research, borazine-doped nanographene (BNG) decorated with halides as the anode material for Li-ion batteries (LIBs) has been investigated by means of first-principles calculations. The calculated adsorption energies of Li+/BNG and Li/BNG complexes are − 47.9 kcal/mol and − 25.2 kcal/mol, respectively, that gives electrochemical cell voltage (Vcell) of 0.99 V. To increase Vcell, different halide anions such as F, Cl, and Br are added to BNG. This strategy increases Vcell from 0.99 V to 3.98, 1.54, and 1.62 V for BNG/F, BNG/Cl, and BNG/Br complexes, respectively. The calculated Vcell value of 3.98 V for BNG/F is remarkable compared with previous reports in the literature. The results presented in this study may be useful for the widespread usage of BNG/F as a promising anode material for LIBs.

Note : This data is mandatory. Please provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheekati SL, Xing Y, Zhuang Y, Huang H (2010) Lithium storage characteristics in nano-graphene platelets. Materials challenges in alternative and renewable energy. Ceram Trans 224:117–127

    Google Scholar 

  2. Johannes MD, Swider-Lyons K, Love CT (2016) Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials. Solid State Ionics 286:83–89

    Article  CAS  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652

    Article  CAS  PubMed  Google Scholar 

  4. Kino K, Yonemura M, Ishikawa Y, Kamiyama T (2016) Two-dimensional imaging of charge/discharge by Bragg edge analysis of electrode materials for pulsed neutron-beam transmission spectra of a Li-ion battery. Solid State Ionics 288:257–261

    Article  CAS  Google Scholar 

  5. Prosini PP, Cento C, Carewska M, Masci A (2015) Electrochemical performance of Li-ion batteries assembled with water-processable electrodes. Solid State Ionics 274:34–39

    Article  CAS  Google Scholar 

  6. Wang Y, Zhang C, Chen Z (2016) Model-based state-of-energy estimation of lithium-ion batteries in electric vehicles. Energy Procedia 88:998–1004

    Article  CAS  Google Scholar 

  7. Wang Z, Wang Y, Rong Y, Li Z, Fantao L (2016) Study on the optimal charging method for lithium-ion batteries used in electric vehicles. Energy Procedia 88:1013–1017

    Article  Google Scholar 

  8. Sun W, Liu J, Wu H, Yue X, Wang Z, Rooney D, Feng J, Sun K (2016) Facile synthesis of copper-manganese spinel anodes with high capacity and cycling performance for lithium-ion batteries. Mater Lett 182:147–150

    Article  CAS  Google Scholar 

  9. Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264(5158):556–558

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Cui LF, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4− graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980

    Article  CAS  PubMed  Google Scholar 

  11. American Association for the Advancement of Science (1997) Glasses for lithium batteries. Science 276(5317):1309

    Google Scholar 

  12. Poizot PLSG, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496

    Article  CAS  PubMed  Google Scholar 

  13. Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 15(24):2107–2111

    Article  CAS  Google Scholar 

  14. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe 3 O 4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5(7):567

    Article  CAS  PubMed  Google Scholar 

  15. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, , R.A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3 (1) 31(2008)

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607

    Article  CAS  Google Scholar 

  17. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):170–192

    Article  CAS  Google Scholar 

  18. Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  19. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  CAS  Google Scholar 

  20. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699

    Article  CAS  Google Scholar 

  21. Kasavajjula U, Wang C, Appleby AJ (2007) Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    Article  CAS  Google Scholar 

  22. Soltani A, Peyghan AA, Bagheri Z (2013) H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Phys E 48:176–180

    Article  CAS  Google Scholar 

  23. Beheshtian J, Peyghan AA, Bagheri Z (2013) Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Struct Chem 24(1):165–170

    Article  CAS  Google Scholar 

  24. Beheshtian J, Peyghan AA, Bagheri Z (2013) Carbon nanotube functionalization with carboxylic derivatives: a DFT study. J Mol Model 19(1):391–396

    Article  CAS  PubMed  Google Scholar 

  25. Mughal MZ, Lemoine P, Lubarsky G, Maguire PD (2016) Protein adsorption on nano-patterned hydrogenated amorphous carbon model surfaces. Mater Des 97:239–248

    Article  CAS  Google Scholar 

  26. Benjwal P, Sharma R, Kar KK (2016) Effects of surface microstructure and chemical state of featherfiber-derived multidoped carbon fibers on the adsorption of organic water pollutants. Mater Des 110:762–774

    Article  CAS  Google Scholar 

  27. Jin P, Hou Q, Tang C, Chen Z (2015) Computational investigation on the endohedral borofullerenes M@ B 40 (M= Sc, Y, La). Theor Chem Accounts 134(2):13

    Article  CAS  Google Scholar 

  28. Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang LS (2015) Cobalt-centred boron molecular drums with the highest coordination number in the CoB 16− cluster. Nat Commun 6(1):8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong H, Hou T, Lee ST, Li Y (2015) New Ti-decorated B 40 fullerene as a promising hydrogen storage material. Sci Rep 5:9952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nejati K, Hosseinian A, Edjlali L, Vessally E (2017) The effect of structural curvature on the cell voltage of BN nanotube based Na-ion batteries. J Mol Liq 229:167–171

    Article  CAS  Google Scholar 

  31. Yang J, Yuan Y, Hua Z (2016) Density functional theory study of interaction of graphene with hypoxanthine, xanthine, and uric acid. Mol Phys 114(14):2157–2163

    Article  CAS  Google Scholar 

  32. Rastegar SF, Peyghan AA, Soleymanabadi H (2015) Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Phys E 68:22–27

    Article  CAS  Google Scholar 

  33. Subalakshmi P, Sivashanmugam A (2017) CuO nano hexagons, an efficient energy storage material for Li-ion battery application. J Alloys Compd 690:523–531

    Article  CAS  Google Scholar 

  34. Nayebzadeh M, Peyghan AA, Soleymanabadi H (2014) Density functional study on the adsorption and dissociation of nitroamine over the nanosized tube of MgO. Phys E 62:48–54

    Article  CAS  Google Scholar 

  35. Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl Phys Lett 83(9):1689–1691

    Article  CAS  Google Scholar 

  36. Peyghan AA, Aslanzadeh SA, Samiei A (2014). Monatshefte Chemie-Chem Mon 145:1083–1087

    Article  CAS  Google Scholar 

  37. Yin LW, Bando Y, Zhu YC, Li MS, Tang CC, Golberg D (2005) Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater 17(2):213–217

    Article  CAS  Google Scholar 

  38. Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69(11):115322

    Article  CAS  Google Scholar 

  39. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    Article  PubMed  CAS  Google Scholar 

  40. Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Artyukhov VI, Liu M, Harutyunyan AR, Yakobson BI (2013) Feasibility of lithium storage on graphene and its derivatives. J Phys Chem Lett 4(10):1737–1742

    Article  CAS  PubMed  Google Scholar 

  42. Hardikar RP, Das D, Han SS, Lee KR, Singh AK (2014) Boron doped defective graphene as a potential anode material for Li-ion batteries. Phys Chem Chem Phys 16(31):16502–16508

    Article  CAS  PubMed  Google Scholar 

  43. Hosseini J, Rastgou A, Moradi R (2017) F encapsulated B12N12 fullerene as an anode for Li-ion batteries: a theoretical study. J Mol Liq 225:913–918

    Article  CAS  Google Scholar 

  44. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Müllen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135

    Article  CAS  PubMed  Google Scholar 

  45. Rad AS, Zareyee D, Peyravi M, Jahanshahi M (2016) Surface study of gallium-and aluminum-doped graphenes upon adsorption of cytosine: DFT calculations. Appl Surf Sci 390:444–451

    Article  CAS  Google Scholar 

  46. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18):185504

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Chen J, Jiang Y, Zhou F, Wang G, Wang R (2016) Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electro catalyst for oxygen reduction reaction. Appl Surf Sci 389:157–164

    Article  CAS  Google Scholar 

  48. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335–3345

    Article  CAS  Google Scholar 

  49. Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T (2004) Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304(5676):1481–1483

    Article  CAS  PubMed  Google Scholar 

  50. Iyer VS, Wehmeier M, Brand JD, Keegstra MA, Müllen K (1997) From Hexa-peri-hexabenzocoronene to “Superacenes”. Angew Chem Int Ed Eng 36(15):1604–1607

    Article  CAS  Google Scholar 

  51. Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF (2015) Construction of an internally B3N3-doped nanographene molecule. Angew Chem Int Ed 54(28):8284–8286

    Article  CAS  Google Scholar 

  52. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517

    Article  CAS  Google Scholar 

  53. Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Chem Phys 100(15):6107–6110

    Article  CAS  Google Scholar 

  54. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764

    Article  CAS  Google Scholar 

  55. Kim E, Weck PF, Berber S, Tománek D (2008) Mechanism of fullerene hydrogenation by polyamines: Ab initio density functional calculations. Phys Rev B 78(11):113404

    Article  CAS  Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H, Li WX (2009) First-principles investigation of surface and subsurface H adsorption on Ir (111). J Phys Chem C 113(51):21361–21367

    Article  CAS  Google Scholar 

  58. Hosseinian A, Asadi Z, Edjlali L, Bekhradnia A, Vessally E (2017) NO2 sensing properties of a borazine doped nanographene: a DFT study. Comput Theor Chem 1106:36–42

    Article  CAS  Google Scholar 

  59. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    Article  CAS  PubMed  Google Scholar 

  60. Meng YS, Arroyo-de Dompablo ME (2009) First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ Sci 2(6):589–609

    Article  CAS  Google Scholar 

  61. Gao S, Shi G, Fang H (2016) Impact of cation–π interactions on the cell voltage of carbon nanotube-based Li batteries. Nanoscale 8(3):1451–1455

    Article  CAS  PubMed  Google Scholar 

  62. Bagheri Z (2016) On the utility of C24 fullerene framework for Li-ion batteries: quantum chemical analysis. Appl Surf Sci 383:294–299

    Article  CAS  Google Scholar 

  63. Hashemizadeh SA, Vijvieh PK, Khabir A, Najafi M (2018) Can the C32 and B16N16 nanocages be suitable anode with high performance for Li, Na and K ion batteries? Inorg Chem Commun 97:18–24

    Article  CAS  Google Scholar 

  64. Moradi M, Bagheri Z, Bodaghi A (2017) Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies. Phys E 89:148–154

    Article  CAS  Google Scholar 

  65. Anaraki-Ardakani H (2017) A computational study on the application of AlN nanotubes in Li-ion batteries. Phys Lett A 381(11):1041–1046

    Article  CAS  Google Scholar 

  66. Shakerzadeh E (2019) Functionalized olympicene (C 19 H 12) as anode material for Li-ion batteries: a DFT approach. Monatshefte für Chemie-Chemical Monthly 150(10):1745–1751

    Article  CAS  Google Scholar 

  67. Wu X, Zhang Z, Soleymanabadi H (2020) Substituent effect on the cell voltage of nanographene based Li-ion batteries: a DFT study. Solid State Commun 306:113770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Solimannejad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, R., Solimannejad, M. The potential application of borazine (B3N3)-doped nanographene decorated with halides as anode materials for Li-ion batteries: a first-principles study. J Mol Model 26, 157 (2020). https://doi.org/10.1007/s00894-020-04418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04418-0

Keywords

Navigation