Skip to main content
Log in

Computational investigation on the endohedral borofullerenes M@B40 (M = Sc, Y, La)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Stimulated by the recent fascinating finding of all-boron fullerene B40 (Zhai et al. in Nat Chem 6:727–731, 2014), we systematically investigated the structures, stabilities and electronic properties of its endohedral derivatives M@B40 (M = Sc, Y, La) by means of density functional theory computations. The binding energies of M@B40 are closely comparable with the classical M@C 2v (9)–C82 family, suggesting the considerable possibility to experimentally achieve these endohedral borofullerenes. The paramagnetic M@B40 molecules can easily form stable dimers with quenched magnetism, which could be avoided by exohedral functionalization and promise potential applications in the design of nanodevices. Furthermore, the infrared absorption spectra and 11B nuclear magnetic resonance spectra were computed to assist future experimental characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731

    CAS  Google Scholar 

  3. Szwacki NG, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:166804

    Article  Google Scholar 

  4. Szwacki NG (2008) Boron fullerenes: a first-principles study. Nanoscale Res Lett 3:49–54

    Article  CAS  Google Scholar 

  5. Yan QB, Sheng XL, Zheng QR, Zhang LZ, Su G (2008) Family of boron fullerenes: general constructing schemes, electron counting rule, and ab initio calculations. Phys Rev B 78:201401

    Article  Google Scholar 

  6. Sheng XL, Yan QB, Zheng QR, Su G (2009) Boron fullerenes B32+8k with four-membered rings and B32 solid phases: geometrical structures and electronic properties. Phys Chem Chem Phys 11:9696–9702

    Article  CAS  Google Scholar 

  7. Zope RR, Baruah T, Lau KC, Liu AY, Pederson MR, Dunlap BI (2009) Boron fullerenes: from B80 to hole doped boron sheets. Phys Rev B 79:161403

    Article  Google Scholar 

  8. Mukhopadhyay S, He H, Pandey R, Yap YK, Boustani I (2009) Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D double-rings. J Phys Conf Ser 176:012028

    Article  Google Scholar 

  9. Shang B, Yuan LF, Zeng XC, Yang J (2010) Ab initio prediction of amorphous B84. J Phys Chem A 114:2245–2249

    Article  CAS  Google Scholar 

  10. Wang L, Zhao J, Li F, Chen Z (2010) Boron fullerenes with 32–56 atoms: irregular cage configurations and electronic properties. Chem Phys Lett 501:16–19

    Article  CAS  Google Scholar 

  11. Wang XQ (2010) Structural and electronic stability of a volleyball-shaped B80 fullerene. Phys Rev B 82:153409

    Article  Google Scholar 

  12. Szwacki NG, Tymczak CJ (2010) The symmetry of the boron buckyball and a related boron nanotube. Chem Phys Lett 494:80–83

    Article  Google Scholar 

  13. Özdoğan C, Mukhopadhyay S, Hayami W, Güvenç ZB, Pandey R, Boustani I (2010) The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J Phys Chem C 114:4362–4375

    Article  Google Scholar 

  14. Zope RR, Baruah T (2011) Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem Phys Lett 501:193–196

    Article  CAS  Google Scholar 

  15. Hayami W, Otani S (2011) Structural stability of boron clusters with octahedral and tetrahedral symmetries. J Phys Chem A 115:8204–8207

    Article  CAS  Google Scholar 

  16. Muya JT, Gopakumar G, Nguyen MT, Ceulemans A (2011) The leapfrog principle for boron fullerenes: a theoretical study of structure and stability of B112. Phys Chem Chem Phys 13:7524–7533

    Article  CAS  Google Scholar 

  17. Polad S, Ozay M (2013) A new hole density as a stability measure for boron fullerenes. Phys Chem Chem Phys 15:19819–19824

    Article  CAS  Google Scholar 

  18. Muya JT, Lijnen E, Nguyen MT, Ceulemans A (2013) The boron conundrum: which principles underlie the formation of large hollow boron cages? Chem Phys Chem 14:346–363

    CAS  Google Scholar 

  19. Prasad DLVK, Jemmis ED (2008) Phys Rev Lett 100:165504

    Article  Google Scholar 

  20. Pochet P, Genovese L, De S, Goedecker S, Caliste D, Ghasemi SA, Bao K, Deutsch T (2011) Low-energy boron fullerenes: role of disorder and potential synthesis pathways. Phys Rev B 83:081403

    Article  Google Scholar 

  21. Sun Q, Wang M, Li Z, Du A, Searles DJ (2014) Carbon dioxide capture and gas separation on B80 fullerene. J Phys Chem C 118:2170–2177

    Article  CAS  Google Scholar 

  22. Li Y, Zhou G, Li J, Gu BL, Duan W (2008) Alkali-metal-doped B80 as high-capacity hydrogen storage media. J Phys Chem C 112:19268–19271

    Article  CAS  Google Scholar 

  23. Li M, Li Y, Zhou Z, Shen P, Chen Z (2009) Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett 9:1944–1948

    Article  CAS  Google Scholar 

  24. Wu G, Wang J, Zhang X, Zhu L (2009) Hydrogen storage on metal-coated B80 buckyballs with density functional theory. J Phys Chem C 113:7052–7057

    Article  CAS  Google Scholar 

  25. Mahdavifar Z, Poulad M (2014) Theoretical prediction of ozone sensing using pristine and endohedral metalloboron B80 fullerenes. Sens Actuators B Chem 205:26–38

    Article  CAS  Google Scholar 

  26. Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358

    Article  CAS  Google Scholar 

  27. Cheng L (2012) B14: an all-boron fullerene. J Chem Phys 136:104301

    Article  Google Scholar 

  28. Boustani I (1994) Systematic LSD Investigation on Cationic boron clusters: B +n (n = 2–14). Int J Quantum Chem 52:1081–1111

    Article  CAS  Google Scholar 

  29. Boustani I (1997) Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n = 2–14). Phys Rev B 55:16426–16438

    Article  CAS  Google Scholar 

  30. Zhai HJ, Kiran B, Li J, Wang LS (2003) Hydrocarbon analogues of boron clusters-planarity, aromaticity and antiaromaticity. Nat Mater 2:827–833

    Article  CAS  Google Scholar 

  31. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed. 42:6004–6008

    Article  CAS  Google Scholar 

  32. Sergeeva AP, Zubarev DY, Zhai HJ, Boldyrev AI, Wang LS (2008) A photoelectron spectroscopic and theoretical study of B16 and B16 2−: an all-boron naphthalene. J Am Chem Soc 130:7244–7246

    Article  CAS  Google Scholar 

  33. Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) A concentric planar doubly π-aromatic B19- cluster. Nat Chem 2:202–206

    Article  Google Scholar 

  34. Sergeeva AP, Averkiev BB, Zhai HJ, Boldyrev AI, Wang LS (2011) All-boron analogues of aromatic hydrocarbons: B17 and B18 . J Chem Phys 134:224304

    Article  Google Scholar 

  35. Romanescu C, Harding DJ, Fielicke A, Wang LS (2012) Probing the structures of neutral boron clusters using infrared/vacuum ultraviolet two color ionization: B11, B16, and B17. J Chem Phys 137:014317

    Article  Google Scholar 

  36. Kiran B, Bulusu S, Zhai HJ, Yoo S, Zeng XC, Wang LS (2005) Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc Natl Acad Sci USA 102:961–964

    Article  CAS  Google Scholar 

  37. Li F, Jin P, Jiang DE, Wang L, Zhang SB, Zhao J, Chen Z (2012) B80 and B101–103 clusters: remarkable stability of the core-shell structures established by validated density functional. J Chem Phys 136:074302

    Article  Google Scholar 

  38. Zhao J, Wang L, Li F, Chen Z (2010) B80 and other medium-sized boron clusters: core-shell structures, not hollow cages. J Phys Chem A 114:9969–9972

    Article  CAS  Google Scholar 

  39. Li H, Shao N, Shang B, Yuan LF, Yang J, Zeng XC (2010) Icosahedral B12-containing core–shell structures of B80. Chem Commun 46:3878–3880

    Article  CAS  Google Scholar 

  40. De S, Willand A, Amsler M, Pochet P, Genovese L, Goedecker S (2011) Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys Rev Lett 106:225502–225505

    Article  Google Scholar 

  41. Boustani I, Rubio A, Alonso JA (1999) Ab initio study of B32 clusters: competition between spherical, quasiplanar and tubular isomers. Chem Phys Lett 311:21–28

    Article  CAS  Google Scholar 

  42. Chacko S, Kanhere DG, Boustani I (2003) Ab initio density functional investigation of B24 clusters: rings, tubes, planes, and cages. Phys Rev B 68:035414

    Article  Google Scholar 

  43. Tian FY, Wang YX (2008) The competition of double-, four-, and three-ring tubular B3n (n = 8–32) nanoclusters. J Chem Phys 129:024903

    Article  Google Scholar 

  44. Tai TB, Duong LV, Pham HT, Mai DTT, Nguyen MT (2014) A disk-aromatic bowl cluster B30: toward formation of boron buckyballs. Chem Commun 50:1558–1560

    Article  CAS  Google Scholar 

  45. Sergeeva AP, Piazza ZA, Romanescu C, Li WL, Boldyrev AI, Wang LS (2012) B22 and B23 : all-boron analogues of anthracene and phenanthrene. J Am Chem Soc 134:18065–18073

    Article  CAS  Google Scholar 

  46. Piazza ZA, Li WL, Romanescu C, Sergeeva AP, Wang LS, Boldyrev AI (2012) A photoelectron spectroscopy and ab initio study of B21 : negatively charged boron clusters continue to be planar at 21. J Chem Phys 136:104310

    Article  Google Scholar 

  47. Popov IA, Piazza ZA, Li WL, Wang LS, Boldyrev AI (2013) A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J Chem Phys 139:144307

    Article  Google Scholar 

  48. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113–3117

    Article  Google Scholar 

  49. Li WL, Chen Q, Tian WJ, Bai H, Zhao YF, Hu HS, Li J, Zhai HJ, Li SD, Wang LS (2014) The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J Am Chem Soc 136:12257–12260

    Article  CAS  Google Scholar 

  50. Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R (2007) Boron cluster cations: transition from planar to cylindrical structures. Angew Chem Int Ed 46:8503–8506

    Article  CAS  Google Scholar 

  51. Lv J, Wang Y, Zhu L, Ma Y (2014) B38: an all-boron fullerene analogue. Nanoscale 6:11692–11696

    Article  CAS  Google Scholar 

  52. Sealy C (2014) Boron puts new ball into play. Nano Today 9:541–542

    Article  Google Scholar 

  53. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  54. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  CAS  Google Scholar 

  55. Jin P, Tang C, Chen Z (2014) Carbon atoms trapped in cages: metal carbide clusterfullerenes. Coord Chem Rev 270–271:89–111

    Article  Google Scholar 

  56. Jin P, Hao C, Gao Z, Zhang SB, Chen Z (2009) Endohedral metalloborofullerenes La2@B80 and Sc3N@B80: a density functional theory prediction. J Phys Chem A 113:11613–11618

    Article  CAS  Google Scholar 

  57. Muya JT, Lijnen E, Nguyen MT, Ceulemans A (2011) Encapsulation of small base molecules and tetrahedral/cubane-like clusters of group V atoms in the boron buckyball: a density functional theory study. J Phys Chem A 115:2268–2280

    Article  CAS  Google Scholar 

  58. Boulanger P, Morinière M, Genovese L, Pochet P (2013) Selecting boron fullerenes by cage-doping mechanisms. J Chem Phys 138:184302

    Article  Google Scholar 

  59. Wang JT, Chen C, Wang EG, Wang DS, Mizuseki H, Kawazoe Y (2009) Highly stable and symmetric boron caged B@Co12@B80 core-shell cluster. Appl Phys Lett 94:133102

    Article  Google Scholar 

  60. Li JL, Yang GW (2009) Iron endohedral-doped boron fullerene: a potential single molecular device with tunable electronic and magnetic properties. J Phys Chem C 113:18292–18295

    Article  CAS  Google Scholar 

  61. Li JL, Yang GW (2010) Tuning electronic and magnetic properties of endohedral Co@B80 and exohedral Co-B80 metallofullerenes by positioning Co atom. J Appl Phys 107:113702

    Article  Google Scholar 

  62. Li JL, Yang GW (2009) Ni@B80: a single molecular magnetic switch. Appl Phys Lett 95:133115

    Article  Google Scholar 

  63. Wang J, Ma L, Liang Y, Gao M, Wang G (2014) Density functional theory study of transition metals doped B80 fullerene. J Theor Comput Chem 13:1450050

    Article  CAS  Google Scholar 

  64. Bai H, Chen Q, Zhai HJ, Li SD (2015) Endohedral and exohedral metalloborospherenes: M@B40 (M = Ca, Sr) and M&B40 (M = Be, Mg). Angew Chem Int Ed. 54:941. doi:10.1002/anie.201408738

  65. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  66. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650

    Article  CAS  Google Scholar 

  67. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299

    Article  CAS  Google Scholar 

  68. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  69. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  70. Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  71. Mennekes T, Paetzold P, Boese R, Bläser D (1991) Tetra-tert-butyltetraboratetrahedrane. Angew Chem Int Ed Engl 30:173–175

    Article  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian, Inc., Wallingford, CT

  73. Schleyer PvR, Jiao H, Hommes NJRVE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  74. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8:863–866

    Article  CAS  Google Scholar 

  75. Chen Z, Neukermans S, Wang X, Janssens E, Zhou Z, Silverans RE, King RB, Schleyer PVR, Lievens P (2006) To achieve stable spherical clusters: general principles and experimental confirmations. J Am Chem Soc 128:12829–12834

    Article  CAS  Google Scholar 

  76. Nishibori E, Takata M, Sakata M, Inakuma M, Shinohara H (1998) Determination of the cage structure of Sc@C82 by synchrotron powder diffraction. Chem Phys Lett 298:79–84

    Article  CAS  Google Scholar 

  77. Takata M, Umeda B, Nishibori E, Sakata M, Saito Y, Ohno M, Shinohara H (1995) Confirmation by X-ray-diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 377:46–49

    Article  CAS  Google Scholar 

  78. Chai Y, Guo T, Jin CM, Haufler RE, Chibante LPF, Fure J, Wang LH, Alford JM, Smalley RE (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    Article  CAS  Google Scholar 

  79. Sakurai T, Wang XD, Xue QK, Hasegawa Y, Hashizume T, Shinohara H (1996) Scanning tunneling microscopy study of fullerenes. Prog Surf Sci 51:263–408

    Article  CAS  Google Scholar 

  80. Feng L, Tsuchiya T, Wakahara T, Nakahodo T, Piao Q, Maeda Y, Akasaka T, Kato T, Yoza K, Horn E, Mizorogi N, Nagase S (2006) Synthesis and characterization of a bisadduct of La@C82. J Am Chem Soc 128:5990–5991

    Article  CAS  Google Scholar 

  81. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508

    Article  CAS  Google Scholar 

  82. Delley B (2000) From molecules to solids with the approach. J Chem Phys 113:7756

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support in China by the National Natural Science Foundation of China (21103224, 51332005), Program for Changjiang Scholars and Innovative Research Team in University (IRT13060), and in USA by Department of Defense (Grant W911NF-12-1-0083) and NSF (Grant EPS-1010094) is gratefully acknowledged. This research used the resource of the Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Jin or Zhongfang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, P., Hou, Q., Tang, C. et al. Computational investigation on the endohedral borofullerenes M@B40 (M = Sc, Y, La). Theor Chem Acc 134, 13 (2015). https://doi.org/10.1007/s00214-014-1612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1612-4

Keywords

Navigation