Skip to main content
Log in

Theoretical research of molecular imprinted polymers formed from formaldehyde and methacrylic acid

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In recent years, with the development of molecular imprinting technology, the imprinting sites, nature of imprinting, selection of functional monomers, cross-linking agents, solvents, and the optimization of the imprinting ratio are all the hot spots of researchers. In this work, the theoretical prediction of the self-assembly system of formaldehyde (HCHO) molecularly imprinted polymer was carried out by the B3LYP/6-31 G(d,p) method. The geometric configuration and active sites of the stable complex of HCHO and methacrylic acid (MAA) were analyzed. The selection of the imprinting ratios, cross-linking agents, and solvents was discussed. The topological properties of electron density of HCHO-MAA complex were considered by using the topological analysis method of chemical bond electron density based on valence bond theory. This study cannot only reveal the relationship between the imprinting mechanism of molecularly imprinted polymers and the molecular structure and properties of molecularly imprinted polymers but also provide valuable reference for the design and preparation of molecularly imprinted polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pereira TFD, da Silva ATM, Borges KB, Nascimento Jr CS (2019). J. Mol. Struct. 1177:101–106

    Article  CAS  Google Scholar 

  2. Zhang F, Luo LH, Gong H, Chen C, Cai C (2018). RSC Adv. 8(56):32262–32268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liang F, Liu YJ, Zhou XD, Hu JM (2005). J. Colloid Interface Sci. 284(2):378–382

    Article  Google Scholar 

  4. Tang XH, Raskin JP, Lahem D, Krumpmann A, Decroly A, Debliquy M (2017). Sens 17(4):675

    Article  Google Scholar 

  5. Zhang K, Zhou TC, Kettisen K, Ye L, Bülow L (2019). Talanta 199:27–31

    Article  CAS  PubMed  Google Scholar 

  6. Pisarev OA, Polyakova IV (2018). React. Funct. Polym. 130:98–110

    Article  CAS  Google Scholar 

  7. Santos WJ, Lima PR, Tarley CR, Höehr NF, Kubota LT (2009). Anal. Chim. Acta 631(2):170–176

    Article  CAS  Google Scholar 

  8. Wang P, Sun X, Su X, Wang T (2016). Analyst:141. https://doi.org/10.1039/C5AN01993A

  9. Peng Y, Xie Y, Luo J, Nie L, Chen Y, Chen L (2010). Anal. Chim. Acta 674(2):190–200

    Article  CAS  PubMed  Google Scholar 

  10. Wubulikasimu M, Muhammad T, Imerhasan M, Hudaberdi N, Peng X (2019). RSC Adv. 9(12):6779–6784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hijazi HY, Bottaro CS (2018). Analyst 143:1117–1123

    Article  CAS  PubMed  Google Scholar 

  12. Chaowana R, Bunkoed O (2019). Anal. Bioanal. Chem. 411(23):6081–6090

    Article  CAS  PubMed  Google Scholar 

  13. Lai C, Zhou XX, Huang DL, Zeng GM, Cheng M, Qin L, Yi H, Zhang C, Xu P, Zhou CY, Wang RZ, Huang C (2018). J Taiwan Inst Chem E 91:517–531

    Article  CAS  Google Scholar 

  14. Ahmadi F, Rezaei H, Tahvilian R (2012). J. Chromatogr. A 1270:9–19

    Article  CAS  PubMed  Google Scholar 

  15. Ahmadi F, Yawari E, Nikbakht M (2014). J. Chromatogr. A 1338:9–16

    Article  CAS  PubMed  Google Scholar 

  16. Javedan G, Shidfar F, Davoodi SH, Ajami M, Gorjipour F, Sureda A, Nabavi SM, Daglia M, Toroudi HP (2016). Mol. Nutr. Food Res. 60:2665–2677

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Liu JB, Tang SS, Jin RF (2015). J. Sep. Sci. 38(15):2647–2654

    Article  CAS  PubMed  Google Scholar 

  18. Ahmadi F, Ahmadi J, Rahimi-Nasrabadi M (2011). J. Chromatogr. A 1218:7739–7747

    Article  CAS  PubMed  Google Scholar 

  19. Dai ZQ, Liu JB, Tang SS, Wang Y, Wang YM, Jin RF (2015). J. Mol. Model. 21(11):290

    Article  PubMed  Google Scholar 

  20. Silva CF, Borges KB, Nascimento CS (2019). J. Mol. Model. 25(104). https://doi.org/10.1007/s00894-019-3990-y

  21. Yi Y, Adrjan B, Li J, Hu B, Szczepan R (2019). J. Mol. Model.:25(202). https://doi.org/10.1007/s00894-019-4090-8

  22. Ueta I, Mochizuki S, Kawakubo S, Kuwabara T, Saito Y (2015). Anal. Sci. 31(2):99–103

    Article  CAS  PubMed  Google Scholar 

  23. Wu YC, Nie F, Tang ZH, Liu DQ (2014). Chin. J. Appl. Chem. 32(1):104–109

    Google Scholar 

  24. Li H, Lu CM, Xie F, Xu MM, Wang SS, Li ZP (2014). Chin. J. Appl. Chem. 42(06):885–890

    CAS  Google Scholar 

  25. Chaudhari A, Sahu PK, Lee SL (2005). Int. J. Quantum Chem. 101(1):67–72

    Article  CAS  Google Scholar 

  26. Aqababa H, Tabandeh M, Tabatabaei M, Hasheminejad M, Emadi M (2013). Mater Sci Eng C 33(1):189–195

    Article  CAS  Google Scholar 

  27. Chipanina NN, Shainyan BA, Sherstyannikova LV, Turchaninov VK (2004). Russ. J. Org. Chem. 40(3):301–306

    Article  CAS  Google Scholar 

  28. Shakerzadeh E (2016). Physica E 78:1–9

    Article  CAS  Google Scholar 

  29. Buczek A, Kupka T, Broda MA (2011). J. Mol. Model. 17(8):2029–2040

    Article  CAS  PubMed  Google Scholar 

  30. Wang YL, Liu JB, Sun JN, Tang SS, Jin RF (2013). Acta Polym. Sin. 12:1525–1530

    Article  Google Scholar 

  31. Jeffrey GA (1999). J. Mol. Struct. 485–486:293–298

    Article  Google Scholar 

  32. Liu JB, Wang GY, Tang SS, Gao Q, Liang DD, Jin RF (2018). J. Sep. Sci. 42(3):769–777

    PubMed  Google Scholar 

  33. Liu JB, Wang Y, Tang SS, Gao Q (2017). New J. Chem. 41(22):13370–13376

    Article  CAS  Google Scholar 

  34. Silva AF, Popelier PLA (2018). J. Mol. Model. 24(8):201

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bader RFW (1985). Acc. Chem. Res. 18(1):9–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Science and Technology Development Plan of Jilin Province (No.20200101018JC) and the Natural Science Fundation of Jilin Province in 2020 (Construction and application of formaldehyde molecularly imprinted QCM sensor) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Liu or Shanshan Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Liu, J., Tang, S. et al. Theoretical research of molecular imprinted polymers formed from formaldehyde and methacrylic acid. J Mol Model 26, 88 (2020). https://doi.org/10.1007/s00894-020-04362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04362-z

Keywords

Navigation