Skip to main content
Log in

Atomistic investigation on effect of Ca doping ratio on mechanical behaviors of nanocrystalline Mg-Ca alloys

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effects of doping ratio of calcium (Ca) on mechanical behaviors are investigated using molecular dynamics (MD) and the second nearest-neighbor modified embedded-atom method (2NN-MEAM) formalism for nanocrystalline (NC) Mg-Ca alloys system. Research results indicate that mechanical behaviors of Mg-Ca alloys are independent of lower strain rate (under 1.0 × 109 s−1). In addition, we observe that Ca doping can affect the mechanical properties of the Mg-Ca alloys, and the optimal 2.0 at% of Ca atoms, which has excellent plasticity, is revealed. When the doping ratio is lower than critical atomic percent (CAT) of Mg2Ca, Young’s modulus and yield stress decrease increasing at% of substitutional Ca. The pyramidal <c + a > dislocations are observed frequently at more active grain boundary (GB) with higher Ca doping ratios. In contrast, with doping ratio above CAT, Mg2Ca reinforcement dominates brittleness Mg/Mg2Ca nanocomposites to obtain high strength. By calculating, a significant increase of strength is discovered when at% of Mg2Ca is above 18.85 (5.34 at% Ca). Intergranular fractures are more likely to nucleate and propagate along weaker Mg/Mg2Ca interfaces. These results are instrumental in design and improving the mechanical properties of Mg-Ca alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  2. Witte F, Hort N, Vog C (2008) Degradable biomaterials based on magnesium corrosion. Curr Opinion Solid State Mater Sci 12:63–72

    Article  CAS  Google Scholar 

  3. Kirkland NT (2012) Magnesium biomaterials: past, present and future. Corros Eng Sci Technol 47:322–328

    Article  CAS  Google Scholar 

  4. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936

    Article  CAS  PubMed  Google Scholar 

  5. Agnew SR, Yoo MH, Tome CN (2001) Application of texture simulation to understanding mechanical behavior of mg and solid solution alloys containing Li or Y. Acta Mater 49:4277–4289

    Article  CAS  Google Scholar 

  6. Bhatia MA, Mathaudhu SN, Solanki KN (2015) Atomic-scale investigation of creep behavior in nanocrystalline mg and mg–Y alloys. Acta Mater 99:382–391

    Article  CAS  Google Scholar 

  7. Pozuelo M, Mathaudhu SN, Kim S (2013) Nanotwins in nanocrystalline mg–Al alloys: an insight from high-resolution TEM and molecular dynamics simulation. Philos Mag Lett 93:640–647

    Article  CAS  Google Scholar 

  8. Liao M, Li B, Horstemeyer MF (2013) Interaction between prismatic slip and a Mg17Al12 precipitate in magnesium. Comput Mater Sci 79:534–539

    Article  CAS  Google Scholar 

  9. Miyazawa N, Yoshida T, Yuasa M (2015) Effect of segregated Al on \( \left\{10\overline{1}2\right\} \) and \( \left\{10\overline{1}1\right\} \) twinning in mg. J Mater Res 30:3629–3641

    Article  CAS  Google Scholar 

  10. Karewar S, Gupta N, Groh S (2017) Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Comput Mater Sci 126:252–264

    Article  CAS  Google Scholar 

  11. Akbarian D, Hamedi H, Damirchi B (2019) Atomistic-scale insights into the crosslinking of polyethylene induced by peroxides. Polymer. 183:121901

    Article  CAS  Google Scholar 

  12. Akbarian D, Yilmaz DE, Cao Y (2019) Understanding the influence of defects and surface chemistry on ferroelectric switching: a ReaxFF investigation of BaTiO3. Phys Chem Chem Phys 21:18240–18249

    Article  CAS  PubMed  Google Scholar 

  13. Swygenhoven HV, Spaczer M, Caro A (1998) Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between cu and Ni. Acta Mater 538:3117–3126

    Google Scholar 

  14. Bandyopadhyay K, Sarkar J, Ghosh KS (2017) Non-equilibrium MD modeling and simulation to extract mechanical properties of copper nanoparticles under ultra-high strain rate loading. Comput Mater Sci 127:277–283

    Article  CAS  Google Scholar 

  15. Zhou Y, Hu M (2017) Mechanical behaviors of nanocrystalline cu/SiC composites: an atomistic investigation. Comput Mater Sci 129:129–136

    Article  CAS  Google Scholar 

  16. Tschopp MA, Murdoch HA, Kecskes LJ (2014) “Bulk” nanocrystalline metals: review of the current state of the art and future opportunities for copper and copper alloys. Jom. 66:1000–1019

    Article  CAS  Google Scholar 

  17. Song HY, Li YL (2012) Atomic simulations of effect of grain size on deformation behavior of nano-polycrystal magnesium. J Appl Phys 111:044322

    Article  CAS  Google Scholar 

  18. Moitra A (2013) Grain size effect on microstructural properties of 3D nanocrystalline magnesium under tensile deformation. Comput Mater Sci 79:247–251

    Article  CAS  Google Scholar 

  19. Kim DH, Manuel MV, Ebrahimi F (2010) Deformation processes in [112¯ 0]-textured nanocrystalline mg by molecular dynamics simulation. Acta Mater 58:6217–6229

    Article  CAS  Google Scholar 

  20. Kim DH, Ebrahimi F, Manuel MV (2011) Grain-boundary activated pyramidal dislocations in nano-textured mg by molecular dynamics simulation. Mater Sci Eng A 528:5411–5420

    Article  CAS  Google Scholar 

  21. Burke EC (1955) Solid solubility of calcium in magnesium. J Min Met Mater Soc 7:285–286

    Article  CAS  Google Scholar 

  22. Vosskühler H (1937) The phase diagram of magnesium-rich mg-Ca alloys. Z Met 29:236–237

    Google Scholar 

  23. Haughton JL (1937) Alloys of magnesium. Part 6—the construction of the magnesium-rich alloys of magnesium and calcium. J Inst Met 61:241–246

    Google Scholar 

  24. Reddy R, Groh S (2016) Atomistic modeling of the effect of calcium on the yield surface of nanopolycrystalline magnesium-based alloys. Comput Mater Sci 112:219–229

    Article  CAS  Google Scholar 

  25. Nahhas MK, Groh S (2018) Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys. J Phys Chem Solids 113:108–118

    Article  CAS  Google Scholar 

  26. Mao P, Yu B, Liu Z (2014) Mechanical, electronic and thermodynamic properties of Mg2Ca laves phase under high pressure: a first-principles calculation. Comput Mater Sci 88:61–70

    Article  CAS  Google Scholar 

  27. Shao L, Shi TT, Zheng J (2015) The native point defects in C14 Mg2Ca laves phase: a first-principles study. Intermetallics. 65:29–34

    Article  CAS  Google Scholar 

  28. Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219

    Article  CAS  Google Scholar 

  29. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963

    Article  CAS  Google Scholar 

  30. Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83:4069–4074

    Article  CAS  Google Scholar 

  31. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  32. Zhou M (2003) A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proceedings of the Royal Society of London. Ser A Mathemat Phys Eng Sci 459:2347–2392

    Article  CAS  Google Scholar 

  33. Lee BJ, Baskes MI (2000) Second nearest-neighbor modified embedded-atom-method potential. Phys Rev B 62:8564

    Article  CAS  Google Scholar 

  34. Groh S (2015) Mechanical, thermal, and physical properties of mg–Ca compounds in the framework of the modified embedded-atom method. J Mech Behav Biomed Mater 42:88–99

    Article  CAS  PubMed  Google Scholar 

  35. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  36. Li J (2005) Basic molecular dynamics. Handbook of materials modeling. Springer, Dordrecht, pp 565–588

    Chapter  Google Scholar 

  37. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Modelling and simulation in materials science and. Engineering. 20:045021

    Google Scholar 

  38. Clarke AS, Jónsson H (1993) Structural changes accompanying densification of random hard-sphere packings. Phys Rev E 47:3975

    Article  CAS  Google Scholar 

  39. Jónsson H, Andersen HC (1988) Icosahedral ordering in the Lennard-Jones liquid and glass. Phys Rev Lett 60:2295

    Article  PubMed  Google Scholar 

  40. Dongare AM, Rajendran AM, Lamattina B (2010) Atomic-scale study of plastic-yield criterion in Nanocrystalline cu at high strain rates. Metall Mater Transact A 41:523–531

    Article  CAS  Google Scholar 

  41. Groh S, Alam M (2015) Fracture behavior of lithium single crystal in the framework of (semi-) empirical force field derived from first-principles. Model Simul Mater Sci Eng 23:045008

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key P&D Program of China (NO. 2017YFB0702501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Yang, Q., Du, J. et al. Atomistic investigation on effect of Ca doping ratio on mechanical behaviors of nanocrystalline Mg-Ca alloys. J Mol Model 26, 103 (2020). https://doi.org/10.1007/s00894-020-04361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04361-0

Keywords

Navigation