Skip to main content
Log in

How accurate is density functional theory in predicting spin density? An insight from the prediction of hyperfine coupling constants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) spectroscopy has been proven to be an important technique for studying paramagnetic systems. Probably, the most accessible EPR parameter and the one that provides a significant amount of information about molecular structure and spin density is the hyperfine coupling constant (HFCC). Hence, accurate quantum-chemical modeling of HFCCs is frequently essential to the adequate interpretation of EPR spectra. It requires the precise spin density, which is the difference between the densities of α- and β-electrons, and thus, its quality is expected to reflect the quality of the total electron density. The question of which approximate exchange-correlation density functional yields sufficiently accurate HFCCs, and thus, the spin density remains open. To assess the performance of well-established density functionals for calculating HFCCs, we used a series of 26 small paramagnetic species and compared the obtained results to the CCSD reference values. The performance of DFT was also tested on EPR-studied o-semiquinone radical interacting with water molecules and Mg2+ cation. The HFCCs were additionally calculated by the DLPNO-CCSD method, and this wave function-based technique was found superior to all functionals we tested. Although some functionals were found, on average, to be fairly efficient, we found that the most accurate functional is system-dependent, and therefore, the DLPNO-CCSD method should be preferred for theoretical investigations of the HFCCs and spin density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253:526–563. https://doi.org/10.1016/j.ccr.2008.05.014

    Article  CAS  Google Scholar 

  2. Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 87. https://doi.org/10.1103/RevModPhys.87.897

    Article  Google Scholar 

  3. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  4. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci U S A 76:6062–6065. https://doi.org/10.1073/pnas.76.12.6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perdew JP (2013) Climbing the ladder of density functional approximations. MRS Bull 38:743–750. https://doi.org/10.1557/mrs.2013.178

    Article  CAS  Google Scholar 

  6. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Density functional theory is straying from the path toward the exact functional. Science 355:49–52. https://doi.org/10.1126/science.aah5975

    Article  CAS  PubMed  Google Scholar 

  7. Su NQ, Zhu Z, Xu X (2018) Doubly hybrid density functionals that correctly describe both density and energy for atoms. Proc Natl Acad Sci 115:2287–2292. https://doi.org/10.1073/pnas.1713047115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kepp KP (2017) Comment on “density functional theory is straying from the path toward the exact functional”. Science 356:496. https://doi.org/10.1126/science.aam9364

    Article  CAS  PubMed  Google Scholar 

  9. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Response to comment on “density functional theory is straying from the path toward the exact functional”. Science 356:496. https://doi.org/10.1126/science.aam9550

    Article  CAS  PubMed  Google Scholar 

  10. Kepp KP (2018) Energy vs. density on paths toward more exact density functionals. Phys Chem Chem Phys 20:7538–7548. https://doi.org/10.1039/c7cp07730k

    Article  CAS  PubMed  Google Scholar 

  11. Ranasinghe DS, Perera A, Bartlett RJ (2017) A note on the accuracy of KS-DFT densities. J Chem Phys 147. https://doi.org/10.1063/1.5001939

    Article  PubMed  Google Scholar 

  12. Gould T (2017) What makes a density functional approximation good? Insights from the left Fukui function. J Chem Theory Comput 13:2373–2377. https://doi.org/10.1021/acs.jctc.7b00231

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Wang X, Truhlar DG, He X (2017) How well can the M06 suite of functionals describe the electron densities of ne, Ne6+, and Ne8+? J Chem Theory Comput 13:6068–6077. https://doi.org/10.1021/acs.jctc.7b00865

    Article  CAS  PubMed  Google Scholar 

  14. Brorsen KR, Yang Y, Pak MV, Hammes-Schiffer S (2017) Is the accuracy of density functional theory for atomization energies and densities in bonding regions correlated? J Phys Chem Lett 8:2076–2081. https://doi.org/10.1021/acs.jpclett.7b00774

    Article  CAS  PubMed  Google Scholar 

  15. Hait D, Head-Gordon M (2018) How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values. J Chem Theory Comput 14:1969–1981. https://doi.org/10.1021/acs.jctc.7b01252

    Article  CAS  PubMed  Google Scholar 

  16. Hammes-Schiffer S (2017) A conundrum for density functional theory. Science 355:28–29. https://doi.org/10.1126/science.aal3442

    Article  CAS  PubMed  Google Scholar 

  17. Korth M (2017) Density functional theory: not quite the right answer for the right reason yet. Angew Chem Int Ed 56:5396–5398. https://doi.org/10.1002/anie.201701894

    Article  CAS  Google Scholar 

  18. Gromov OI, Kuzin SV, Golubeva EN (2019) Performance of DFT methods in the calculation of isotropic and dipolar contributions to 14N hyperfine coupling constants of nitroxide radicals. J Mol Model 25:93. https://doi.org/10.1007/s00894-019-3966-y

    Article  CAS  PubMed  Google Scholar 

  19. Improta R, Barone V (2004) Interplay of electronic, environmental, and vibrational effects in determining the hyperfine coupling constants of organic free radicals. Chem Rev 104:1231–1254. https://doi.org/10.1021/cr960085f

    Article  CAS  PubMed  Google Scholar 

  20. Mattar SM, Emwas AH, Stephens AD (2002) Accurate computations of the methyl isotropic hyperfine coupling constants in 2-methyl-1,4-benzosemiquinone radical intermediate. Chem Phys Lett 363:152–160. https://doi.org/10.1016/S0009-2614(02)01136-3

    Article  CAS  Google Scholar 

  21. Mattar SM, Stephens AD (2000) UB1LYP hybrid density functional studies of the 2,2,6,6-tetramethyl-4-piperidone-oxyly (TEMPONE) hyperfine tensors. Chem Phys Lett 601–610

    Article  CAS  Google Scholar 

  22. Malkin VG, Malkina OL, Zhidomirov GM (2017) Visualization of Electron paramagnetic resonance hyperfine structure coupling pathways. J Phys Chem A 121:3580–3587. https://doi.org/10.1021/acs.jpca.7b01833

    Article  CAS  PubMed  Google Scholar 

  23. Hermosilla L, Calle P, García de la Vega JM (2015) Modeling EPR parameters of nitrogen containing conjugated radical cations. RSC Adv 5:62551–62562. https://doi.org/10.1039/C5RA08758A

    Article  CAS  Google Scholar 

  24. Hermosilla L, Calle P, Sieiro C, García N, Tiemblo P, Guzmán J (2007) DFT study of the EPR spectral pattern of propagating methacrylic radicals. Chem Phys 340:237–244. https://doi.org/10.1016/j.chemphys.2007.09.004

    Article  CAS  Google Scholar 

  25. Hermosilla L, La Vega JMGD, Sieiro C, Calle P (2011) DFT calculations of isotropic hyperfine coupling constants of nitrogen aromatic radicals: the challenge of nitroxide radicals. J Chem Theory Comput 7:169–179. https://doi.org/10.1021/ct1006136

    Article  CAS  PubMed  Google Scholar 

  26. Kossmann S, Kirchner B, Neese F (2007) Performance of modern density functional theory for the prediction of hyperfine structure: meta-GGA and double hybrid functionals. Mol Phys 105:2049–2071. https://doi.org/10.1080/00268970701604655

    Article  CAS  Google Scholar 

  27. Kokorin AI, Zaripov RB, Gromov OI, Hideg K, Kálai T (2018) Tailored nitroxide radicals and biradical containing 13C enriched acetylene groups: ENDOR and DFT investigation. Appl Magn Reson 49:137–149. https://doi.org/10.1007/s00723-017-0942-5

    Article  Google Scholar 

  28. Kaupp M, Bühl M, Malkin VG (2004) Calculation of NMR and EPR parameters. Theory and Applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  29. Witwicki M, Jezierska J (2015) Toward an understanding of the ambiguous electron paramagnetic resonance spectra of the iminoxy radical from o-fluorobenzaldehyde oxime: density functional theory and ab initio studies. J Phys Chem A 119:9109–9120. https://doi.org/10.1021/acs.jpca.5b06143

    Article  CAS  PubMed  Google Scholar 

  30. Jerzykiewicz M, Ćwieląg-Piasecka I, Witwicki M, Jezierski A (2011) α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: spin trapping EPR and theoretical studies. Chem Phys 383:27–34. https://doi.org/10.1016/j.chemphys.2011.03.028

    Article  CAS  Google Scholar 

  31. Malček M, Bučinský L, Valko M, Biskupič S (2015) Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects. J Mol Model 21:237. https://doi.org/10.1007/s00894-015-2752-8

    Article  CAS  PubMed  Google Scholar 

  32. Tabaka K, Jezierska J (2004) Molecular geometry and hyperfine interactions in iminoxy radicals with CO or CH2 group–DFT and EPR studies in liquid and rigid media. Chem Phys Lett 394:298–306. https://doi.org/10.1016/j.cplett.2004.07.007

    Article  CAS  Google Scholar 

  33. Jaszewski AR, Tabaka K, Jezierska J, Kedzierska J (2003) The effect of the carbonyl moiety on the spin density delocalization in the iminoxy radicals. Hybrid density functional studies. Chem Phys Lett 367:678–689. https://doi.org/10.1016/S0009-2614(02)01743-8

    Article  CAS  Google Scholar 

  34. Jaszewski AR, Jezierska J (2001) Hybrid density functional approach to the isotropic and anisotropic hyperfine couplings with 14N and 1H nuclei in the blue copper proteins. Chem Phys Lett 343:571–580. https://doi.org/10.1016/S0009-2614(01)00753-9

    Article  CAS  Google Scholar 

  35. Jaszewski AR, Jezierska J, Jezierski A (2000) Hybrid density functional approach to the structures and EPR parameters of σ-type iminoxy radicals: the case of 3-oxobutan-2-iminoxyl. Chem Phys Lett 319:611–617. https://doi.org/10.1016/S0009-2614(00)00187-1

    Article  CAS  Google Scholar 

  36. Munzarová M, Kaupp M (1999) A critical validation of density functional and coupled-cluster approaches for the calculation of EPR hyperfine coupling constants in transition metal complexes. J Phys Chem A 103:9966–9983. https://doi.org/10.1021/jp992303p

    Article  CAS  Google Scholar 

  37. Asher JR, Kaupp M (2007) Hyperfine coupling tensors of the benzosemiquinone radical anion from Car–Parrinello molecular dynamics. ChemPhysChem 8:69–79. https://doi.org/10.1002/cphc.200600325

    Article  CAS  PubMed  Google Scholar 

  38. O’Malley PJ (1998) B3LYP, hybrid density functional studies of the durosemiquinone radical: the effect of symmetrical and asymmetrical hydrogen bonding on spin densities and hyperfine couplings. J Phys Chem A 102:248–253. https://doi.org/10.1021/jp972467a

    Article  Google Scholar 

  39. De Almeida WB, O’Malley PJ (2018) Conformational control of cofactors in nature: the effect of methoxy group orientation on the electronic structure of ubisemiquinone. Chem Phys Lett 695:158–161. https://doi.org/10.1016/j.cplett.2017.12.066

    Article  CAS  Google Scholar 

  40. Beal NJ, Corry TA, O’Malley PJ (2017) Comparison between experimental and broken symmetry density functional theory (BS-DFT) calculated electron paramagnetic resonance (EPR) parameters of the S2 state of the oxygen-evolving complex of photosystem II in its native (calcium) and strontium-subst. J Phys Chem B 121:11273–11283. https://doi.org/10.1021/acs.jpcb.7b09498

    Article  CAS  PubMed  Google Scholar 

  41. Beal NJ, Corry TA, O’Malley PJ (2018) A comparison of experimental and broken symmetry density functional theory (BS-DFT) calculated Electron paramagnetic resonance (EPR) parameters for intermediates involved in the S2 to S3 state transition of nature’s oxygen evolving complex. J Phys Chem B 122:1394–1407. https://doi.org/10.1021/acs.jpcb.7b10843

    Article  CAS  PubMed  Google Scholar 

  42. Witwicki M (2018) Density functional theory and ab initio studies on hyperfine coupling constants of phosphinyl radicals. Int J Quantum Chem 118. https://doi.org/10.1002/qua.25779

    Article  Google Scholar 

  43. Barone V, Biczysko M, Bloino J, Egidi F, Puzzarini C (2013) Accurate structure, thermodynamics, and spectroscopy of medium-sized radicals by hybrid coupled cluster/density functional theory approaches: the case of phenyl radical. J Chem Phys 138:234303. https://doi.org/10.1063/1.4810863

    Article  CAS  PubMed  Google Scholar 

  44. Pavone M, Cimino P, Crescenzi O, Sillanpää A, Barone V (2007) Interplay of intrinsic, environmental, and dynamic effects in tuning the EPR parameters of nitroxides: further insights from an integrated computational approach. J Phys Chem B 111:8928–8939. https://doi.org/10.1021/jp0727805

    Article  CAS  PubMed  Google Scholar 

  45. Cimino P, Pavone M, Barone V (2006) Structural, thermodynamic, and magnetic properties of adducts between TEMPO radical and alcohols in solution: new insights from DFT and discrete–continuum solvent models. Chem Phys Lett 419:106–110. https://doi.org/10.1016/j.cplett.2005.11.067

    Article  CAS  Google Scholar 

  46. Maria Jerzykiewicz, Irmina Ćwieląg-Piasecka, Maciej Witwicki, Adam Jezierski, (2010) EPR spin trapping and DFT studies on structure of active antioxidants in biogycerol. Chemical Physics Letters 497 (1-3):135–141

    Article  CAS  Google Scholar 

  47. Munzarová M (2004) DFT calculations of EPR hyperfine coupling tensors. In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Theory and Applications, First. Wiley-VCH, Weinheim, pp 463–482

    Google Scholar 

  48. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  49. Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  50. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  51. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  52. Witwicki M, Jezierska J (2011) Effects of solvents, ligand aromaticity, and coordination sphere on the g tensor of anionic o-semiquinone radicals complexed by Mg2+ ions: DFT studies. J Phys Chem B 115:3172–3184. https://doi.org/10.1021/jp110515j

    Article  CAS  PubMed  Google Scholar 

  53. Neese F (2001) Theoretical study of ligand superhyperfine structure. Application to cu(II) complexes. J Phys Chem A 105:4290–4299. https://doi.org/10.1021/jp003254f

    Article  CAS  Google Scholar 

  54. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  55. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  56. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824. https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  57. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple-the PBE functional. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  58. Hoe WM, Cohen AJ, Handy NC (2001) Assessment of a new local exchange functional OPTX. Chem Phys Lett 341:319–328. https://doi.org/10.1016/S0009-2614(01)00581-4

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  60. Xu X, Goddard III WA (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci 101:2673–2677. https://doi.org/10.1073/pnas.0308730100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun J, Ruzsinszky A, Perdew J (2015) Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 115:1–6. https://doi.org/10.1103/PhysRevLett.115.036402

    Article  CAS  Google Scholar 

  62. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125. https://doi.org/10.1063/1.2370993

    Article  PubMed  Google Scholar 

  63. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  64. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  65. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  66. Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615. https://doi.org/10.1080/00268970010023435

    Article  CAS  Google Scholar 

  67. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  68. Grimme S (2005) Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. J Phys Chem A 109:3067–3077. https://doi.org/10.1021/jp050036j

    Article  CAS  PubMed  Google Scholar 

  69. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) Benchmark study of DFT functionals for late-transition-metal reactions †. J Phys Chem A 110:709–716. https://doi.org/10.1021/jp054449w

    Article  CAS  PubMed  Google Scholar 

  70. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  71. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  72. Da Chai J, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106. https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  73. Mardirossian N, Head-Gordon M (2014) ωb97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys Chem Chem Phys 16:9904–9924. https://doi.org/10.1039/c3cp54374a

    Article  CAS  PubMed  Google Scholar 

  74. Mardirossian N, Head-Gordon M (2016) ω B97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J Chem Phys 144:214110. https://doi.org/10.1063/1.4952647

    Article  CAS  PubMed  Google Scholar 

  75. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108. https://doi.org/10.1063/1.2148954

    Article  CAS  PubMed  Google Scholar 

  76. Schwabe T, Grimme S (2006) Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys 8:4398. https://doi.org/10.1039/b608478h

    Article  CAS  PubMed  Google Scholar 

  77. Kozuch S, Gruzman D, Martin JML (2010) DSD-BLYP: a general purpose double hybrid density functional including spin component scaling and dispersion correction. J Phys Chem C 114:20801–20808. https://doi.org/10.1021/jp1070852

    Article  CAS  Google Scholar 

  78. Neese F (2004) Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems. J Phys Chem Solids 65:781–785. https://doi.org/10.1016/j.jpcs.2003.11.015

    Article  CAS  Google Scholar 

  79. Neese F (2006) Importance of direct spin - spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J Am Chem Soc 128:10213–10222. https://doi.org/10.1021/ja061798a

    Article  CAS  PubMed  Google Scholar 

  80. Saitow M, Becker U, Riplinger C, Valeev EF, Neese F (2017) A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J Chem Phys 146:164105. https://doi.org/10.1063/1.4981521

    Article  CAS  PubMed  Google Scholar 

  81. Datta D, Kossmann S, Neese F (2016) Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory. J Chem Phys 145:114101. https://doi.org/10.1063/1.4962369

    Article  CAS  Google Scholar 

  82. Pinski P, Riplinger C, Valeev EF, Neese F (2015) Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. I. an efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J Chem Phys 143:034108. https://doi.org/10.1063/1.4926879

    Article  CAS  PubMed  Google Scholar 

  83. Saitow M, Neese F (2018) Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J Chem Phys 149. https://doi.org/10.1063/1.5027114

    Article  PubMed  Google Scholar 

  84. Kaupp M, Arbuznikov AV, Heelmann A, Görling A (2010) Hyperfine coupling constants of the nitrogen and phosphorus atoms: a challenge for exact-exchange density-functional and post-Hartree-Fock methods. J Chem Phys 132:1–10. https://doi.org/10.1063/1.3417985

    Article  CAS  Google Scholar 

  85. Witwicki M, Jezierska J, Ozarowski A (2009) Solvent effect on EPR, molecular and electronic properties of semiquinone radical derived from 3,4-dihydroxybenzoic acid as model for humic acid transient radicals: high-field EPR and DFT studies. Chem Phys Lett 473:160–166. https://doi.org/10.1016/j.cplett.2009.03.035

    Article  CAS  Google Scholar 

  86. Neese F (2017) Quantum chemistry and EPR parameters. eMagRes 6:1–22. https://doi.org/10.1002/9780470034590.emrstm1505

    Article  CAS  Google Scholar 

  87. Puzzarini C, Barone V (2010) Toward spectroscopic accuracy for open-shell systems: molecular structure and hyperfine coupling constants of H2 CN, H2 CP, NH 2, and PH2 as test cases. J Chem Phys 133:184301. https://doi.org/10.1063/1.3503763

    Article  CAS  PubMed  Google Scholar 

  88. Grimme S, Hansen A (2015) A practicable real-space measure and visualization of static electron-correlation effects. Angew Chem Int Ed 54:12308–12313. https://doi.org/10.1002/anie.201501887

    Article  CAS  Google Scholar 

  89. Vydrov OA, Van Voorhis T (2010) Nonlocal van der Waals density functional: the simpler the better. J Chem Phys 133:244103. https://doi.org/10.1063/1.3521275

    Article  CAS  PubMed  Google Scholar 

  90. Witwicki M, Jezierska J (2013) DFT insight into o-semiquinone radicals and Ca2+ ion interaction: structure, g tensor, and stability. Theor Chem Accounts 132:1383. https://doi.org/10.1007/s00214-013-1383-3

    Article  CAS  Google Scholar 

  91. Cossi M, Rega N, Scalmani G, Barone V, Chimica D, Ii F, Angelo CMS (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  92. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  93. Taguchi AT, O’Malley PJ, Wraight CA, Dikanov SA (2017) Determination of the complete spin density distribution in 13 C-labeled protein-bound radical intermediates using advanced 2D electron paramagnetic resonance spectroscopy and density functional theory. J Phys Chem B 121:10256–10268. https://doi.org/10.1021/acs.jpcb.7b10036

    Article  CAS  PubMed  Google Scholar 

  94. Sinnecker S, Reijerse E, Neese F, Lubitz W (2004) Hydrogen bond geometries from electron paramagnetic resonance and electron-nuclear double resonance parameters: density functional study of quinone radical anion-solvent interactions. J Am Chem Soc 126:3280–3290. https://doi.org/10.1021/ja0392014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to Professor Zdzisław Latajka, honoring his many contributions to chemistry, on the occasion of his 70th birthday.

Funding

This work was financially supported by the National Science Centre, Poland (Narodowe Centrum Nauki, nr rej. 2018/02/X/ST5/01186). All computations were performed using computers of the Wroclaw Center for Networking and Supercomputing (Grant No. 47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Witwicki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection on Zdzislaw Latajka 70th Birthday Festschrift

Electronic supplementary material

ESM 1

(PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witwicki, M., Walencik, P.K. & Jezierska, J. How accurate is density functional theory in predicting spin density? An insight from the prediction of hyperfine coupling constants. J Mol Model 26, 10 (2020). https://doi.org/10.1007/s00894-019-4268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4268-0

Keywords

Navigation