Skip to main content
Log in

Enhanced GROMACS: toward a better numerical simulation framework

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The GROMACS software package represented a promising direction toward the molecular dynamic simulation and there is ongoing interest to extend it. In this study, we introduce a new component into the conventional package with the goal being to facilitate the process of finding the native structure of proteins with minimal free-energy value. We achieved this through incorporating a wide range of metaheuristic optimization algorithms and force fields, leading up to the EGROMACS molecular simulation toolkit. Compared with other programs, the EGROMACS supports all standard force fields as well as new minimization algorithms and Hybrid MPI/OpenMP parallelization. We applied the proposed EGROMACS framework to minimize the structure of several target sequences. The obtained results showed comparative performance of the introduced framework to current well-known molecular simulation algorithms. This extension to the GROMACS, however, uses metaheuristic algorithms to address the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adhikari B, Bhattacharya D, Cao R, Cheng J (2015) Confold: residue-residue contact-guided ab initio protein folding. Proteins: Structure, Function, and Bioinformatics 83(8):1436–1449

    Article  CAS  Google Scholar 

  2. Anfinsen CB (1993) Studies on the principles that govern the folding of protein chains. Chemistry 1971-1980:55

    Google Scholar 

  3. Beauchamp KA, McGibbon R, Lin YS, Pande VS (2012) Simple few-state models reveal hidden complexity in protein folding. Proc Natl Acad Sci 109(44):17807–17813

    Article  CAS  Google Scholar 

  4. Bhattacharya D, Adhikari B, Li J, Cheng J (2016) Fragsion: ultra-fast protein fragment library generation by IOHMM sampling. Bioinformatics 32(13):2059–2061

    Article  CAS  Google Scholar 

  5. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466

    Article  CAS  Google Scholar 

  6. Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) Cabs-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41(W1):W406–W411

    Article  Google Scholar 

  7. Dunbrack RL Jr (2002) Rotamer libraries in the 21st century. Current Opinion in Structural Biology 12 (4):431–440

    Article  CAS  Google Scholar 

  8. van Gunsteren WF, Daura X, Mark AE (2002) GROMOS force field. American cancer society. https://onlinelibrary.wiley.com/doi/abs/10.1002/0470845015.cga011

  9. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 4(3):435–447

    Article  CAS  Google Scholar 

  10. Holland JH et al (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT Press, Cambridge

    Book  Google Scholar 

  11. Huang PS, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537 (7620):320

    Article  CAS  Google Scholar 

  12. Jorgensen WL (2002) OPLS force fields. American cancer society. https://onlinelibrary.wiley.com/doi/abs/10.1002/0470845015.coa002s

  13. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols 10(6):845

    Article  CAS  Google Scholar 

  14. Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766

  15. Kryshtafovych A, Fidelis K, Moult J (2014) CASP10 results compared to those of previous CASP experiments. Proteins: Structure, Function, and Bioinformatics 82:164–174

    Article  CAS  Google Scholar 

  16. Levinthal C (1969) How to fold graciously. Mossbauer spectroscopy in biological systems: Proceedings of a meeting held at allerton house. Monticello, Illinois (Debrunnder JTP, Munck E.., eds.) pp 22–24

  17. Man VH, He X, Derreumaux P, Ji B, Xie XQ, Nguyen PH, Wang J (2019) Effects of all-atom molecular mechanics force fields on amyloid peptide assembly: the case of aβ16–22 dimer. Journal of Chemical Theory and Computation 15(2):1440–1452. https://doi.org/10.1021/acs.jctc.8b01107. PMID: 30633867

    Article  Google Scholar 

  18. McGinnis S, Madden TL (2004) Blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(suppl_2):W20–W25

    Article  CAS  Google Scholar 

  19. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC et al (2010) Modbase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39(suppl_1):D465–D474

    PubMed  PubMed Central  Google Scholar 

  20. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using rosetta. In: Methods in enzymology, vol 383, pp 66–93. Elsevier

  21. Roy A, Kucukural A, Zhang Y (2010) I-tasser: a unified platform for automated protein structure and function prediction. Nature Protocols 5(4):725

    Article  CAS  Google Scholar 

  22. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(suppl_2):W244–W248

    Article  Google Scholar 

  23. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4):341–359

    Article  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  25. Webb B, Sali A (2014) Protein structure modeling with modeller. In: Protein structure prediction, pp 1–15. Springer

  26. Wolpert DH, Macready WG, et al. (1997) No free lunch theorems for optimization. IEEE transactions on evolutionary computation 1(1):67–82

    Article  Google Scholar 

  27. Wötzel N (2011) A novel approach to de novo protein structure prediction using knowledge based energy functions and experimental restraints. Citeseer

  28. Wu S, Zhang Y (2008) Muster: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function, and Bioinformatics 72(2):547–556

    Article  CAS  Google Scholar 

  29. Xu D, Jaroszewski L, Li Z, Godzik A (2015) Aida: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics 31(13):2098–2105

    Article  CAS  Google Scholar 

  30. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Structure, Function, and Bioinformatics 80(7):1715–1735

    CAS  Google Scholar 

  31. Xu J, Li M, Kim D, Xu Y (2003) Raptor: optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology 1(01):95–117

    Article  CAS  Google Scholar 

  32. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp 210–214. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Effat Dehghanian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshani, H., Dehghanian, E. & Rahati, A. Enhanced GROMACS: toward a better numerical simulation framework. J Mol Model 25, 355 (2019). https://doi.org/10.1007/s00894-019-4232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4232-z

Keywords

Navigation