Skip to main content
Log in

Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Lignin is one of the most abundant natural materials around the world, accounting for about a quarter of the woody tissue. In general, it is well known that these highly branched aromatic bio-polymers are formed from the polymerization of p-coumaryl, coniferyl, and sinapyl alcohols; however, the connection between these structures are still not known in detail. In this work, we have employed electronic structure calculations to investigate local reactivities and details regarding the connectivity between the basic structures of lignin (unmodified mono and dilignols as well as dehydrogenated monolignols). Condensed-to-atoms Fukui indexes, local softness and hard and soft acids and bases principle were employed in the analyses. The results allow identifying reactive sites on the lignin subunits and access details on the synthesis and degradation of this bio-material. In particular, it is possible to identify a strong influence of the dehydrogenation and monomer dimerization on the monolignols reactivities, which activate the O–C4 and C5 positions.

The local reactivities of lignin subunits were evaluated via DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boerjan W, Ralph J, Baucher M (2003) . Ann Rev Plant Biol 54(1):519. https://doi.org/10.1146/annurev.arplant.54.031902.134938

    CAS  Google Scholar 

  2. Freudenberg K (1966) .. In: Lignin structure and reactions, advances in chemistry, vol 59. American Chemical Society, pp 1–21

  3. Higuchi T (2006) . J Wood Sci 52(1):2. https://doi.org/10.1007/s10086-005-0790-z

    CAS  Google Scholar 

  4. Sjöström E (1993) Wood chemistry: fundamentals and applications. Gulf Professional Publishing

  5. Chen H (2014) .. In: Biotechnology of lignocellulose. Springer, Netherlands, pp 25–71

  6. Pettersen R (1984) . In: Rowell R (ed) The chemistry of solid wood, vol 207. American Chemical Society, Washington, pp 57–126. https://doi.org/10.1021/ba-1984-0207.ch002

  7. Rowell RM, Pettersen R, Tshabalala MA (2013) . In: Rowell R (ed) Handbook of wood chemistry and wood composites, Chapter 3. 2nd edn. CRC Press, Boca Raton, pp 33–72

  8. Elder T, Fort RC Jr (2010) . In: Heitner C, Dimmel D, Schmidt JA (eds) Lignin and lignans: advances in chemistry. Taylor & Francis, Boca Raton, pp 321–348

  9. Durbeej B, Wang YN, Eriksson L (2003) . In: Goos G, Hartmanis J, van Leeuwen J, Palma JMLM, Sousa AA, Dongarra J, Hernández V (eds) High performance computing for computational science — VECPAR 2002, vol 2565. Springer, Berlin, pp 137–165

  10. Durbeej B, Eriksson L (2003) . Holzforschung 57(1):59. https://doi.org/10.1515/HF.2003.009

    CAS  Google Scholar 

  11. Durbeej B, Eriksson L (2003) . Holzforschung 57(2):150. https://doi.org/10.1515/HF.2003.024

    CAS  Google Scholar 

  12. Sangha AK, Petridis L, Smith JC, Ziebell A, Parks JM (2012) . Environ progress sustain energy 31(1):47. https://doi.org/10.1002/ep.10628

    CAS  Google Scholar 

  13. Martinez C, Rivera JL, Herrera R, Rico JL, Flores N, Rutiaga JG, López P (2008) . J Mol Model 14(2):77. https://doi.org/10.1007/s00894-007-0253-0

    CAS  PubMed  Google Scholar 

  14. Martínez C, Sedano M, Mendoza J, Herrera R, Rutiaga JG, Lopez P (2009) . J Mol Graph Modell 28(2):196. https://doi.org/10.1016/j.jmgm.2009.07.002

    Google Scholar 

  15. Shigematsu M, Kobayashi T, Taguchi H, Tanahashi M (2006) . J Wood Sci 52(2):128. https://doi.org/10.1007/s10086-005-0737-4

    CAS  Google Scholar 

  16. Higuchi T (1985) .. In: Biosynthesis and biodegradation of wood components. Elsevier, pp 141–160. https://doi.org/10.1016/B978-0-12-347880-1.50011-8

  17. Batagin-Neto A, Oliveira EF, Graeff C, Lavarda F (2013) . Mol Simul 39(4):309. https://doi.org/10.1080/08927022.2012.724174

    CAS  Google Scholar 

  18. Batagin-Neto A, Bronze-Uhle E, Graeff CFO (2015) . Phys Chem Chem Phys 17(11):7264. https://doi.org/10.1039/C4CP05256K

    CAS  PubMed  Google Scholar 

  19. Schaftenaar G, Noordik JH (2000) . J Comput-Aided Mol Des 14(2):123. https://doi.org/10.1023/A:1008193805436

    CAS  PubMed  Google Scholar 

  20. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) . J Comput Chem 25(9):1157. https://doi.org/10.1002/jcc.20035

    CAS  PubMed  Google Scholar 

  21. Allouche AR (2011) . J Comput Chem 32(1):174. https://doi.org/10.1002/jcc.21600

    CAS  PubMed  Google Scholar 

  22. Stewart JJP (2007) . J Mol Model 13(12):1173. https://doi.org/10.1007/s00894-007-0233-4

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stewart JJP (1990) . J Comput-Aided Mol Des 4(1):1. https://doi.org/10.1007/BF00128336

    PubMed  Google Scholar 

  24. Gans JD, Shalloway D (2001) . J Mol Graph Modell 19(6):557. https://doi.org/10.1016/S1093-3263(01)00090-0

    CAS  Google Scholar 

  25. Becke AD (1993) ., vol 98. https://doi.org/10.1063/1.464913

  26. Lee C, Yang W, Parr RG (1988) . Phys Rev B 37(2):785. https://doi.org/10.1103/PhysRevB.37.785

    CAS  Google Scholar 

  27. Vosko SH, Wilk L, Nusair M (1980) . Can J Phys 58(8):1200. https://doi.org/10.1139/p80-159

    CAS  Google Scholar 

  28. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) . J Phys Chem 98(45):11623. https://doi.org/10.1021/j100096a001

    CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2009) Gaussian 09

  30. Klamt A, Schüürmann G (1993) . J Chem Soc Perkin Trans 2(5):799. https://doi.org/10.1039/P29930000799

    Google Scholar 

  31. Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  32. Yang W, Mortier WJ (1986) . J Amer Chem Soc 108(19):5708. https://doi.org/10.1021/ja00279a008

    CAS  Google Scholar 

  33. Zielinski F, Tognetti V, Joubert L (2012) . Chem Phys Lett 527:67. https://doi.org/10.1016/j.cplett.2012.01.011

    CAS  Google Scholar 

  34. Chermette H (1999) . J Comput Chem 20(1):129

    CAS  Google Scholar 

  35. Geerlings P, De Proft F, Langenaeker W (2003) . Chem Rev 103(5):1793. https://doi.org/10.1021/cr990029p

    CAS  PubMed  Google Scholar 

  36. Domingo L, Ríos-Gutiérrez M, Pérez P (2016) . Molecules 21(6):748. https://doi.org/10.3390/molecules21060748

    PubMed Central  Google Scholar 

  37. Lewars EG (2010) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics, 2nd edn. Springer, Berlin

    Google Scholar 

  38. Batagin-Neto A, Bronze-Uhle E, Vismara M, Assis A, Castro F, Geiger T, Lavarda F, Graeff C (2013) . Current Phys Chem 3(4):431. https://doi.org/10.2174/18779468113036660026

    CAS  Google Scholar 

  39. Bronze-Uhle E, Batagin-Neto A, Lavarda F, Graeff CFO (2011) . J Appl Phys 110(7):073510. https://doi.org/10.1063/1.3644946

    Google Scholar 

  40. Cesarino I, Simões RP, Lavarda F, Batagin-Neto A (2016) . Electrochim Acta 192:8. https://doi.org/10.1016/j.electacta.2016.01.178

    CAS  Google Scholar 

  41. Martins LM, de Faria Vieira S, Baldacim GB, Bregadiolli BA, Caraschi JC, Batagin-Neto A, da Silva-Filho LC (2018) . Dye Pigment 148:81. https://doi.org/10.1016/j.dyepig.2017.08.056

    CAS  Google Scholar 

  42. Mandú LO, Batagin-Neto A (2018) . J Mol Model 24(7):157. https://doi.org/10.1007/s00894-018-3660-5

    PubMed  Google Scholar 

  43. do Amaral Rodrigues J, de Araújo AR, Pitombeira NA, Plácido A, de Almeida MP, Veras LMC, Delerue-Matos C, Lima FCDA, Neto AB, de Paula RCM, Feitosa JPA, Eaton P, Leite JRSA, da Silva DA (2019) . Int J Biol Macromol 128:965. https://doi.org/10.1016/j.ijbiomac.2019.01.206

    PubMed  Google Scholar 

  44. De Proft F, Martin JM, Geerlings P (1996) . Chem Phys Lett 256(4-5):400. https://doi.org/10.1016/0009-2614(96)00469-1

    Google Scholar 

  45. Thanikaivelan P, Padmanabhan J, Subramanian V, Ramasami T (2002) . Theor Chem Accounts: Theory, Comput Model (Theor Chim Acta) 107(6):326. https://doi.org/10.1007/s00214-002-0352-z

    CAS  Google Scholar 

  46. Roy RK, Pal S, Hirao K (1999) . J Chem Phys 110(17):8236. https://doi.org/10.1063/1.478792

    CAS  Google Scholar 

  47. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) . J Comput Chem 23 (12):1198. https://doi.org/10.1002/jcc.10067

    PubMed  Google Scholar 

  48. Fleming I (2007) Frontier orbitals and organic chemical reactions, Reprint edn. Wiley, London

    Google Scholar 

  49. Eider T, McKee M, Worley S (1988) . Holzforschung 42(4):233. https://doi.org/10.1515/hfsg.1988.42.4.233

    Google Scholar 

  50. Elder T, Worley S (1985) . Holzforschung 39(3):173. https://doi.org/10.1515/hfsg.1985.39.3.173

    CAS  Google Scholar 

  51. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) . Plant Physiology 153(3):895. https://doi.org/10.1104/pp.110.155119

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dimmel D (2010) . In: Heitner C, Dimmel D, Schmidt JA (eds) Lignin and lignans: advances in chemistry. Taylor & Francis, Boca Raton, pp 1–10

Download references

Funding

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq) [grant numbers 448310/2014-7 and 420449/2018-3] and the Pro-Rectory of Research (PROPe) of the São Paulo State University (UNESP) for the financial support and student scholarship. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Batagin-Neto.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.30 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, R.A., Ventorim, G. & Batagin-Neto, A. Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures. J Mol Model 25, 228 (2019). https://doi.org/10.1007/s00894-019-4130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4130-4

Keywords

Navigation