Skip to main content
Log in

Theoretical study of the electronic structure of mono-bromide of lanthanum molecule including spin-orbit coupling effects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Among the family of lanthanide halides compounds, this work is devoted to the third halogen bromine. The presented lanthanum bromide LaBr molecule has a remarkable scientific interest regarding the other molecules because it presents few experimental studies and only one theoretical study. The theoretical electronic structure of the LaBr molecule is achieved by using the post-Hartree–Fock methods manifested by the complete active space self consistent field (CAS-SCF) method and the multi reference configuration interaction with single and double excitation (MRCI-SD) method. All of these calculations are performed via the quantum chemistry software MOLPRO. We predicted for the first time in the literature, 24 lowest-lying electronic states in the representation 2S+ 1Λ(±) and their corresponding components in the representation Ω(±) when taking into account the spin-orbit coupling (SOC), situated below 22,000 cm− 1. We calculated the spectroscopic constants for both cases (without/with SOC effects) related to the 13 singlet and 11 triplet states and for their components. We drew also in this paper the potential energy curves (PECs in a range of internuclear distance R varying from 2.00 to 4.22 Å.

Potential energy curves for 13 singlet electronic states of LaBr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rubinoff Daryl S, Evans Corey J, Gerry Michael CL (2003) The pure rotational spectra of the lanthanum monohalides, LaF, LaCl, LaBr, LaI. J Mol Spectrosc 218:169–179

    Article  Google Scholar 

  2. Barrow RF, Bastin MW, Moore DLG (1967) Electronic states of states of gaseous fluorides of scandium, yttrium and lanthanum. Nature 215:1072–1073

    Article  CAS  Google Scholar 

  3. Schall H, Linton C, Field RW (1983) Laser spectroscopy of LaF: determination of the separation of the singlet and triplet state manifolds. J Mol Spectrosc 100:437–448

    Article  CAS  Google Scholar 

  4. Hildenbrand DL, Lau KH (1995) Thermochemical properties of the gaseous scandium, yttrium and lanthanum fluoride. J Chem Phys 102:3769–3775

    Article  CAS  Google Scholar 

  5. Kaledin LA, Kaledin AL, Heaven MC (1997) Laser absorption spectroscopy of LaF: analysis of B 1π − X 1Σ+ transition. J Mol Spectrosc 182:50–57

    Article  CAS  Google Scholar 

  6. Bernard A, Effantin C, d’Incan J, Verg’es J (2000) The (1)1π, (2)1Σ+X 1Σ+ transition of LaF. J Mol Spectrosc 202:163–165

    Article  Google Scholar 

  7. Xin J, Klynning L (1994) Fourier transform spectroscopy of LaCl: rotational analyses of the infrared bands systems. Phys Scripta 49:209–213

    Article  CAS  Google Scholar 

  8. Cao X, Dolg M (2005) Pseudopotential studies on the electronic structure of lanthanum monohalides LaF, LaCl, LaBr and LaI. J Theor Comput Chem 4:583–592

    Article  CAS  Google Scholar 

  9. Fahs H, Allouche AR, Korek M, Aubert Frecon M (2002) Theoretical electronic structure of the lowest-lying states of the LaF molecule. J Chem Phys 117(8):3715–3720

    Article  CAS  Google Scholar 

  10. Taher-Mansour F, Allouche AR, Aubert-Frecon M (2003) Theoretical electronic structure of the lowest-lying states of the LaI molecule. J Mol Spectrosc 221:1–6

    Article  CAS  Google Scholar 

  11. Fahs H, Korek M, Allouche AR, Aubert-Frecon M (2004) Theoretical electronic structure of the lowest-lying states of the LaCl molecule. J Chem Phys 299:97–103

    CAS  Google Scholar 

  12. Hamade Y, El Sobbahi A (2018) Theoretical study of the electronic structure of mono-chloride of lanthanum molecule including spin-orbit coupling effect. J Mol Model 24:100–113

    Article  Google Scholar 

  13. Hamade Y, Taher F, Choueib M, Monteil Y (2009) Theoretical electronic investigation of the low-lying electronic states of LuF molecule. Can J Phys 87:1163–1169

    Article  CAS  Google Scholar 

  14. Hamade Y, Bazzi H, Sidawi J, Taher F, Monteil Y (2012) Ab initio study of the lowest-lying electronic states of LuCl molecule. J Phys Chem A 116:12123–12128

    Article  CAS  Google Scholar 

  15. Davidson ER, Silver DW (1977) Size consistency in the dilute helium gas electronic structure. Chem Phys Lett 52(3):403–406

    Article  CAS  Google Scholar 

  16. Martin WC, Zalubas R, Hagan L (1978) Nat Stand Ref Data Ser, NSRDS-NBS60,422 pp Nat Bur Stand

  17. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) . Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  18. Cao X, Dolg M (2001) Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J Chem Phys 115:7348–7355

    Article  CAS  Google Scholar 

  19. Martin JML, Sundermann A (2001) Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. J Chem Phys 114:3408–3420

    Article  CAS  Google Scholar 

  20. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J Chem Phys 119:11099–11113

    Article  CAS  Google Scholar 

  21. MOLPRO, a package of ab initio programs, H. -J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, and others, see http://www.molpro.net

  22. Blondel C, Cacciani P, Delsart C, Trainham R (1989) High-resolution determination of the electron affinity of fluorine and bromine using crossed ion and laser beams. Phys Rev A 40:3698–3701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaman Hamade.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamade, Y., Taher, F., Haidar, Y. et al. Theoretical study of the electronic structure of mono-bromide of lanthanum molecule including spin-orbit coupling effects. J Mol Model 25, 250 (2019). https://doi.org/10.1007/s00894-019-4114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4114-4

Keywords

Navigation