Skip to main content
Log in

Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure and properties of diphenylalanine (FF) peptide nanotubes (PNT) based on phenylalanine were investigated by various molecular modeling methods. The main approach employed semi-empirical quantum-chemical methods (PM3 and AM1). Ab initio, density functional theory methods and molecular mechanical approaches were also used. Both model structures and structures extracted from experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by natural self-assembly revealed important differences depending on chirality: d and l. In both the cases, the effect of chirality on the results of self-assembly of FF PNT was established: PNT based on the d-FF has large condensation energy E0 in the transverse direction, and form thicker and shorter PNT bundles than those based on l-FF. A topological difference was established: model PNT were optimized into structures consisting of rings, while naturally self-assembled PNT consisted of helical turns. The latter nanotubes differed from the original l-FF and d-FF and formed helix structures of different chirality signs in accordance with the alternation rule of chirality due to macromolecule hierarchy. A topological transition between ring and helix turn PNT structures is discussed: self-assembled natural helix structures are favorable and their energy is lower by a value of the order of one to several eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a–d
Fig. 3
Fig. 4
Fig. 5a,b
Fig. 6a–d
Fig. 7a,b

Similar content being viewed by others

References

  1. Calvin M (1969) Chemical evolution. Molecular evolution, towards the origin of living system on the Earth and elsewhere. Claredon, Oxford

    Google Scholar 

  2. Lehninger AL (1972) Biochemistry. The molecular basis of cell structure and function. Worth, New York

    Google Scholar 

  3. Pachahara SK, Subbalakshmi C, Nagaraj R (2017) Formation of nanostructures by peptides. Curr Protein Pept Sci 18(2):1–19

    Google Scholar 

  4. Aryaa SK, Solankia PR, Dattab M, Malhotra BD (2009) Recent advances in self- assembled monolayers based biomolecular electronic devices. J Biosensors Bioelectron 24(9):2810–2817

    Article  Google Scholar 

  5. Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(6):582–612

    Article  CAS  PubMed  Google Scholar 

  6. Orsi M (2018) Molecular simulation of self-assembly. In: Helena S. Azevedo and Ricardo M.P. da Silva (eds) Self-assembling biomaterials. 1st edn. Molecular design, characterization and application in biology and medicine. Elsevier, Amsterdam, pp 305–318

    Chapter  Google Scholar 

  7. Lee OS, Stupp SI, Schatz GC (2011) Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J Am Chem Soc 133(10):3677–3683

    Article  CAS  PubMed  Google Scholar 

  8. Frith WJ (2016) Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective). Philos Trans A 374(2072):20150138. https://doi.org/10.1098/rsta.2015.0138

    Article  CAS  Google Scholar 

  9. van der Lit J, Marsman JL, Koster RS, Jacobse PH, den Hartog SA, Vanmaekelbergh D, Klein Gebbink RJM, Filion L, Ingmar Swart I (2016) Modeling the self-assembly of organic molecules in 2D molecular layers with different structures. J Phys Chem C 120(1):318–323. https://doi.org/10.1021/acs.jpcc.5b09889

    Article  CAS  Google Scholar 

  10. Brandon CJ, Martin BP, McGee KJ, Stewart JJP, Braun-Sand SB (2015) An approach to creating a more realistic working model from a protein data bank entry. J Mol Modeling 21(1):11

    Article  Google Scholar 

  11. Ryan H, Carter M, Stenmark P, Stewart JJ, Braun-Sand SB (2016) A comparison of X-ray and calculated structures of the enzyme MTH1. J Mol Mod 22(7):1–18

    Article  CAS  Google Scholar 

  12. Eliel EL, Wilen S, Doyle SM (2001) Basic organic stereochemistry. Wiley-Interscience, New York

    Google Scholar 

  13. IUPAC. Compendium of chemical terminology (1997) 2nd edn. (The "gold book") compiled by A. D. McNaught and A. Wilkinson. Blackwell, Oxford

  14. Mason SF (1984) Origins of biomolecular handedness. Nature 311:19–23

    Article  CAS  PubMed  Google Scholar 

  15. Holmstedt B, Frank H, Testa B (eds) (1990) Chirality and biological activity. Liss, New York

    Google Scholar 

  16. Capito RM, Azevedo HS, Velichko YS, Mata A, Stupp SI (2008) Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 19(5871):1812–1816

    Article  Google Scholar 

  17. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752

    Article  CAS  PubMed  Google Scholar 

  18. Tverdislov VA (2013) Chirality as a primary switch of hierarchical levels in molecular biological systems. Biophysics 58(1):128–132

    Article  CAS  Google Scholar 

  19. Malyshko EV, Tverdislov VA (2016) IOP. J Phys Conf Ser 741:012065

    Article  Google Scholar 

  20. Tverdislov VA, Malyshko EV, Il’chenko SA, Zhulyabina OA, Yakovenko LV (2017) A periodic system of chiral structures in molecular biology. Biophysics 62(3):331–341. https://doi.org/10.1134/S0006350917030228

    Article  CAS  Google Scholar 

  21. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Hazanovich N (1993) Self assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  PubMed  Google Scholar 

  22. Gorbitz CH (2001) Nanotube formation by hydrophobic dipeptides. Chem Eur J 7:5153–5159

    Article  CAS  PubMed  Google Scholar 

  23. Sedman VL, Adler-Abramovich L, Allen S, Gazit E, Tendler SJB (2006) Direct observation of the release of phenylalanine from diphenilalanine nanotubes. J Am Chem Soc 128:6903–6908

    Article  CAS  PubMed  Google Scholar 

  24. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    Article  CAS  Google Scholar 

  25. Shklovsky J, Beker P, Amdursky N, Gazit E, Rosenman G (2010) Bioinspired peptide nanotubes: deposition technology and physical properties. Mater Sci Eng B169:62–66

    Article  Google Scholar 

  26. Bystrov VS, Bdikin I, Heredia A, Pullar RC, Mishina E, Sigov A, Kholkin AL (2012) Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Ciofani G, Menciassi A (eds) Piezoelectric nanomaterials for biomedical applications. Springer, Berlin, pp 187–211

    Chapter  Google Scholar 

  27. Bystrov VS, Seyedhosseini E, Kopyl S, Bdikin IK, Kholkin AL (2014) Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements. J Appl Phys 116(6):066803. https://doi.org/10.1063/1.4891443

    Article  CAS  Google Scholar 

  28. Bystrov VS (2016) Computer simulation nanostructures: bioferroelectric peptide nanotubes. LAP Lambert academic press, Saarbrucken ISBN 978–3–659-92397-5

    Google Scholar 

  29. Bystrov VS, Paramonova EV, Bdikin IK, Kopyl S, Heredia A, Pullar RC, Kholkin AL (2012) Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics 440(1):3–24

    Article  CAS  Google Scholar 

  30. Bystrov VS, Kopyl SA, Zelenovskiy P, Zhulyabina OA, Tverdislov VA, Salehli F, Ghermani NE, Vya S, Kholkin AL (2018) Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules. Ferroelectrics 525:168–177. https://doi.org/10.1080/00150193.2018.14328

    Article  CAS  Google Scholar 

  31. Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G (2010) Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4:610–614

    Article  CAS  PubMed  Google Scholar 

  32. Hereida A, Bdikin I, Kopyl S, Mishina E, Semin S, Sigov A, German K, Bystrov V, Gracio J, Kholkin AL (2013) Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes. J Phys D Appl Phys 43:462001

    Article  Google Scholar 

  33. Nguyen V, Zhu R, Jenkins K, Yang R (2016) Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat Commun 7:13566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zelenovskiy P, Kornev I, Vasilev S, Kholkin A (2016) On the origin of the great rigidity of self-assembled diphenylalanine nanotubes. Phys Chem Chem Phys 18(43):29681–29685

    Article  CAS  PubMed  Google Scholar 

  35. Zelenovskiy PS, Davydov AO, Krylov AS, Kholkin AL (2017) Raman study of structural transformations in self-assembled dipheny lalanine nanotubes at elevated temperatures. J Raman Spectrosc 48(11):1401–1405

    Article  CAS  Google Scholar 

  36. Bdikin I, Bystrov VS, Delgadillo I, Gracio J, Kopyl S, Wojtas M, Mishina E, Sigov A, Kholkkin AL (2012) Polarization switching and patterning in self-assembled peptide tubular structures. J Appl Phys 111:074104

    Article  Google Scholar 

  37. Bystrov VS (2018) Photoferroelectricity in di-phenylalanine peptide nanotubes. Comput Condensed Matter 14:94–100. 7. https://doi.org/10.1016/j.cocom.2017.11.00

    Article  Google Scholar 

  38. Zelenovskiy PS, Vya S, Nuraeva AS, Vasilev SG, Vasileva DS, Alikin DO, Chezganov DS, Krasnov VP, Kholkin AL (2015) Morphology and piezoelectric properties of diphenylalanine microcrystals grown from methanol-water solution. Ferroelectrics 475:127–134

    Article  CAS  Google Scholar 

  39. Nuraeva A, Vasilev S, Vasileva D, Zelenovskiy P, Chezganov D, Esin A, Kopyl S, Romanyuk K, VYa S, Kholkin AL (2016) Evaporation-driven crystallization of diphenylalanine microtubes for microelectronic applications. Cryst Growth Des 16:1472–1479

    Article  CAS  Google Scholar 

  40. Müller U (2013) Symmetry relationships between crystal structures. Applications of crystallographic group theory in crystal chemistry. Oxford University Press, Oxford

    Book  Google Scholar 

  41. Hypercube Inc (2002) HyperChem (versions 7.51 and 8.0). Hypercube Inc., Gainesville. http://www.hyper.com/?tabid=360 (accessible March 2018–January 2019)

  42. Stewart JJP (1989) Optimization of Parameters for Semiempirical Methods. I. Method. J Comput Chem 10:209

    Article  CAS  Google Scholar 

  43. Stewart JJP (1989) Optimization of parameters for semiempirical methods. II. Applications. J Comput Chem 10:221

    Article  CAS  Google Scholar 

  44. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Mod 13(12):1173–1213

    Article  CAS  Google Scholar 

  45. Szabo A, Ostlund N (1985) Modern quantum chemistry. Macmillan, New York

    Google Scholar 

  46. Clark TA (1985) Handbook of computational chemistry. Wiley, New York

    Google Scholar 

  47. Kohn W, Sham LJ (19655) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

  48. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  49. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  50. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  54. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New York

    Google Scholar 

  55. Krishnan R, Kinkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  56. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  57. Møller C, Plesset M (1934) Note on an approximation treatment for many-Electron systems. Phys Rev 46(7):618–622

    Article  Google Scholar 

  58. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153(6):503–506

    Article  CAS  Google Scholar 

  59. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functionals. J Chem Phys 109:6264

    Article  CAS  Google Scholar 

  60. Bystrov VS, Paramonova EV, Dekhtyar Y, Pullar RC, Katashev A, Polyaka N, Bystrova AV, Sapronova AV, Fridkin VM, Kliem H, Kholkin AL (2012) Polarization of poly(vinylidene fluoride) and poly(vinylidene fluoridetrifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition. J Appl Phys 111:104113. https://doi.org/10.1063/1.4721373

    Article  CAS  Google Scholar 

  61. Bystrov VS, Paramonova EV, Bdikin IK, Bystrova AV, Pullar RC, Kholkin AL (2013) Molecular modeling of the piezoelectric effectin the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J Mol Model 19:3591–3602. https://doi.org/10.1007/s00894-013-1891-z

    Article  CAS  PubMed  Google Scholar 

  62. Bystrov VS, Bdikin IK, Silibin M, Karpinsky D, Kopyl S, Paramonova EV, Goncalves G (2017) Molecular modeling of the piezoelectric properties in the graphene/graphene oxide and polyvinylidene fluoride (PVDF) polymer ferroelectric composites. J Mol Mod 23:128. https://doi.org/10.1007/s00894-017-3291-2

    Article  CAS  Google Scholar 

  63. Murrell JN, Harget AJ (1971) Semi-empirical self-consistent-field molecular orbital theory of molecules. Wiley Interscience, New York

    Google Scholar 

  64. Andrade-Filho T, Martins TC, Ferreira FF, Alves WA, Rocha AR (2016) Water-driven stabilization of diphenylalanine nanotube structures. Theor Chem Accounts 135(8):185. https://doi.org/10.1007/s00214-016-1936-3

    Article  CAS  Google Scholar 

  65. Dewar MJS, Thiel W (1977) The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4906

    Article  CAS  Google Scholar 

  66. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) A new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  67. Klein E, Matis M, Lukes V, Cibulkova Z (2006) The applicability of AM1 and PM3 semi- empirical methods for the study of NeH bond dissociation enthalpies and ionisation potentials of amine type antioxidants. Polym Degrad Stab 91:262–270

    Article  CAS  Google Scholar 

  68. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127

    Article  CAS  Google Scholar 

  69. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta Jr S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  70. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins and nucleic acids. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  71. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  72. Zelenovskiy PS, Nuraeva AS, Kopyl S, Arkhipov SG, Vasilev SG, Bystrov VS, Svitlyk V, Shur VYa, Mafra L, Kholkin AL (2019) Chirality-dependent growth of self-assembled diphenylalanine microtubes. Cryst Growth Des (in press)

  73. The Cambridge Crystallographic Data Centre (CCDC). https://www.ccdc.cam.ac.uk/ (accessed July 2018–January 2019)

  74. Yin P, Zhang Z-M, Lv H, Li T, Haso F, Hu L, Zhang B, Bacsa J, Wei Y, Gao Y, Hou Y, Li Y-G, Hill CL, Wang E-B, Liu T (2015) Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Comm 6:6475. https://doi.org/10.1038/ncomms7475

    Article  CAS  Google Scholar 

  75. Ilawe NV, Schweitzer-Stenner R, DiGuiseppi D, Wong BM (2018) Is a cross-b-sheet structure of low molecular weight peptides necessary for the formation of fibrils and peptide hydrogels? Phys Chem Chem Phys 20:18158–18168

    Article  CAS  PubMed  Google Scholar 

  76. Ilawe NV, Raeber AE, Schweitzer-Stenner R, Toal SE, Wong BM (2015) Assessing backbone solvation effects in the conformational propensities of amino acid residues in unfolded peptides. Phys Chem Chem Phys 17:24917–24924

    Article  CAS  PubMed  Google Scholar 

  77. Tamamis P, Adler-Abramovich L, Reches M, Marshall K, Sikorski P, Serpell L, Gazit E, Archontis G (2009) Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations. Biophys J 96:5020–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Villa A, van der Vegt NFA, Pete C (2009) Self-assembling dipeptides: including solvent degrees of freedom in a coarse-grained model. Phys Chem Chem Phys 11:2068–2076

    Article  CAS  PubMed  Google Scholar 

  79. Rissanou AN, Georgilis E, Kasotakis E, Mitraki A, Yarmandaris V (2013) Effect of solvent on the self-assembly of Dialanine and diphenylalanine peptides. J Phys Chem B 117(15):3962–3975

    Article  CAS  PubMed  Google Scholar 

  80. Flack HD, Bernardinelli G (2008) The use of X-ray crystallography to determine absolute configuration. Chirality 20:681–690

    Article  CAS  PubMed  Google Scholar 

  81. Flack HD (2008) The use of X-ray crystallography to determine absolute configuration (II). Acta Chim Slov 55:689–691

    CAS  Google Scholar 

  82. Hahn T (ed) (2005) International tables for crystallography. Volume A. Springer, Netherlands

    Google Scholar 

  83. https://openbabel.org/docs/dev/Installation/install.html (accessed 2018–January 2019)

  84. Lennard-Jones JE (1924) On the determination of molecular fields. Proc R Soc Lond A 106(738):463–477

    Article  Google Scholar 

  85. Hadzibabic Z, Kruger P, Cheneau M, Battelier B, Dalibard J (2006) Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441:1118–1121

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen V, Jenkins K, Yang R (2015) Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization. Nano Energy 17:323–329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Russian Foundation for Basic Research (RFBR grant 19-01-00519 А). P.Z and S.K. are grateful to FCT project PTDC/CTMCTM/31679/2017/ CENTRO-01-0145-FEDER-031679. Part of this work was funded by national funds (OE), through FCT in scope of the framework contract foreseen in numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19, and project CICECO-Aveiro Institue of Materials, FCT Ref. UID/CTM/50011/2019, financed by national funds through FCT/MCTES. Crystallographic data for D-FF nanotubes reported in the paper [72] have been deposited in the Cambridge Crystallographic Data Centre [73], no. CCDC 1853771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Bystrov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystrov, V.S., Zelenovskiy, P.S., Nuraeva, A.S. et al. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes. J Mol Model 25, 199 (2019). https://doi.org/10.1007/s00894-019-4080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4080-x

Keywords

Navigation