World Health Organization (2017) Global Tuberculosis Report 2017. World Health Organization, Geneva
Minnikin DE, Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. Soc Appl Microbiol Symp Ser 8:189–256
CAS
Google Scholar
Minnikin DE, Kremer L, Dover LG, Besra GS (2002) The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9:545–553
CAS
Article
Google Scholar
Verschoor JA, Baird MS, Grooten J (2012) Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 51:325–339
CAS
Article
Google Scholar
Barry III CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179
CAS
Article
Google Scholar
Watanabe M, Aoyagi Y, Ridell M, Minnikin DE (2001) Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837
CAS
Article
Google Scholar
Al Dulayymi JR, Baird MS, Roberts E (2005) The synthesis of a single enantiomer of a major α-mycolic acid of M. tuberculosis. Tetrahedron 61:11939–11951
Article
Google Scholar
Al Dulayymi JR, Baird MS, Roberts E, Minnikin DE (2006) The synthesis of single enantiomers of meromycolic acids from mycobacterial wax esters. Tetrahedron 62:11867–11880
Article
Google Scholar
Al Dulayymi JR, Baird MS, Roberts E, Deysel M, Verschoor J (2007) The first synthesis of single enantiomers of the major methoxymycolic acid of Mycobacterium tuberculosis. Tetrahedron 63:2571–2592
Article
Google Scholar
Koza G, Baird MS (2007) The first synthesis of single enantiomers of ketomycolic acids. Tetrahedron Lett 48:2165–2169
CAS
Article
Google Scholar
Al Dulayymi JAR, Baird MS, Roberts E (2003) The synthesis of a single enantiomer of a major α-mycolic acid of Mycobacterium tuberculosis. Chem Commun:228–229
Al-Dulayymi J a R, Baird MS, Mohammed H, Roberts E, Clegg W (2006) The synthesis of one enantiomer of the α-methyl-trans-cyclopropane unit of mycolic acids. Tetrahedron 62:4851–4862
CAS
Article
Google Scholar
Baird M, Don Lawson C, Maza-Iglesias M, Sirhan M, Al Dulayymi J (2017) The synthesis of single enantiomers of α-mycolic acids of Mycobacterium tuberculosis and related organisms, with alternative cyclopropane stereochemistries. SynOpen 01:0103–0116
Article
Google Scholar
Watanabe M, Aoyagi Y, Mitome H, Fujita T, Naoki H, Ridell M, Minnikin DE (2002) Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology 148:1881–1902
CAS
Article
Google Scholar
Yuan Y, Zhu Y, Crane DD, Barry CE (1998) The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 29:1449–1458
CAS
Article
Google Scholar
Dubnau E, Chan J, Raynaud C, Mohan VP, Lanèelle M-A, Yu K, Quèmard A, Smith I, Daffè M (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637
CAS
Article
Google Scholar
Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, Daffè M, Emile J-F, Marcou B, Cardona P-J, de Chastellier C, Altare F (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistance. PLoS Pathog 4:e1000204
Article
Google Scholar
Sambandan D, Dao DN, Weinrick BC, Vilcheze C, Gurcha SS, Ojha A, Kremer L, Besra GS, Hatfull GF, Jacobs Jr WR (2013) Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 4:e00222–e00213
CAS
Article
Google Scholar
Chan CE, Zhao BZ, Cazenave-Gassiot A, Pang SW, Bendt AK, Wenk MR, MacAry PA, Hanson BJ (2013) Novel phage display-derived mycolic acid-specific antibodies with potential for tuberculosis diagnosis. J Lipid Res 54:2924–2932
CAS
Article
Google Scholar
Vermeulen I, Baird M, Al-Dulayymi J, Smet M, Verschoor J, Grooten J (2017) Mycolates of Mycobacterium tuberculosis modulate the flow of cholesterol for bacillary proliferation in murine macrophages. J Lipid Res 58:709–718
CAS
Article
Google Scholar
Beukes M, Lemmer Y, Deysel M, Al Dulayymi JR, Baird MS, Koza G, Iglesias MM, Rowles RR, Theunissen C, Grooten J, Toschi G, Roberts VV, Pilcher L, Van Wyngaardt S, Mathebula N, Balogun M, Stoltz AC, Verschoor JA (2010) Structure-function relationships of the antigenicity of mycolic acids in tuberculosis patients. Chem Phys Lipids 163:800–808
CAS
Article
Google Scholar
Smet M, Pollard C, De Beuckelaer A, Van Hoecke L, Vander Beken S, De Koker S, Al Dulayymi JR, Huygen K, Verschoor J, Baird MS, Grooten J (2016) Mycobacterium tuberculosis-associated synthetic mycolates differentially exert immune stimulatory adjuvant activity. Eur J Immunol 46:2149–2154
CAS
Article
Google Scholar
Vander Beken S, Al Dulayymi JR, Naessens T, Koza G, Maza-Iglesias M, Rowles R, Theunissen C, De Medts J, Lanckacker E, Baird MS, Grooten J (2011) Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol 41:450–460
CAS
Article
Google Scholar
Glickman MS, Cox JS, Jacobs WR (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727
CAS
Article
Google Scholar
Rao V, Gao F, Chen B, Jacobs WR, Glickman MS (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis induced inflammation and virulence. J Clin Invest 116:1660–1667
CAS
Article
Google Scholar
Barkan D, Liu Z, Sacchettini JC, Glickman MS (2009) Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. Chem Biol 16:499–509
CAS
Article
Google Scholar
Barkan D, Hedhli D, Yan HG, Huygen K, Glickman MS (2012) Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect Immun 80:1958–1968
CAS
Article
Google Scholar
Korf J, Stoltz A, Verschoor J, De Baetselier P, Grooten J (2005) The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 2005:890–900
Article
Google Scholar
Korf JE, Pynaert G, Tournoy K, Boonefaes T, Van Oosterhout A, Ginneberge D, Haegeman A, Verschoor JA, De Baetselier P, Grooten J (2006) Macrophage reprogramming by mycolic acid promotes a tolerogenic response in experimental asthma. Am J Respir Crit Care Med 174:152–160
CAS
Article
Google Scholar
Mathebula NS, Pillay J, Toschi G, Verschoor JA, Ozoemena KI (2009) Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: a potential impedimetric immunosensing platform for active tuberculosis. Chem Commun:3345–3347
Ndlandla FL, Ejoh V, Stoltz AC, Naicker B, Cromarty AD, van Wyngaardt S, Khati M, Rotherham LS, Lemmer Y, Niebuhr J, Baumeister CR, Al Dulayymi JR, Swai H, Baird MS, Verschoor JA (2016) Standardization of natural mycolic acid antigen composition and production for use in biomarker antibody detection to diagnose active tuberculosis. J Immunol Methods 435:50–59
CAS
Article
Google Scholar
Tima HG, Al Dulayymi JR, Denis O, Lehebel P, Baols KS, Mohammed MO, L’Homme L, Sahb MM, Potemberg G, Legrand S, Lang R, Beyaert R, Piette J, Baird MS, Huygen K, Romano M (2017) Inflammatory properties and adjuvant potential of synthetic glycolipids homologous to mycolate esters of the cell wall of Mycobacterium tuberculosis. J Innate Immun 9:162–180
CAS
Article
Google Scholar
Jones A, Pitts M, Al Dulayymi JR, Gibbons J, Ramsay A, Goletti D, Gwenin CD, Baird MS (2017) New synthetic lipid antigens for rapid serological diagnosis of tuberculosis. PLoS One 12:e0181414
Article
Google Scholar
Pan J, Fujiwara N, Oka S, Maekura R, Ogura T, Yano I (1999) Anti-cord factor (trehalose 6,6′-dimycolate) IgG antibody in tuberculosis patients recognizes mycolic acid subclasses. Microbiol Immunol 43:863–869
Schleicher GK, Feldman C, Vermaak Y, Verschoor JA (2002) Prevalence of anti-mycolic acid antibodies in patients with pulmonary tuberculosis co-infected with HIV. Clin Chem Lab Med 40:882–887
CAS
Article
Google Scholar
Thanyani ST, Roberts V, Siko DG, Vrey P, Verschoor JA (2008) A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. J Immunol Methods 332:61–72
CAS
Article
Google Scholar
Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffè M (2008) Direct visualization of the outer membrane of mycobacteria and Corynebacteria in their native state. J Bacteriol 190:5672–5680
CAS
Article
Google Scholar
Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105:3963–3967
CAS
Article
Google Scholar
Daffé M, Zuber B (2014) The fascinating coat surrounding mycobacteria. In: Remaut H, Fronzes R (eds) Bacterial Membranes. Caister, Norfolk, Chap. 5, pp 179–192
Minnikin DE, Lee OYC, Wu HHT, Nataraj V, Donoghue HD, Ridell M, Watanabe M, Alderwick L, Bhatt A, Besra GS (2015) Pathophysiological implications of cell envelope structure in Mycobacterium tuberculosis and related taxa. In: Ribón W (ed) Tuberculosis. Intech, London, Chap. 7, pp 145–175
Villeneuve M, Kawai M, Kanashima H, Watanabe M, Minnikin DE, Nakahara H (2005) Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. Biochim Biophys Acta Biomembr 1715:71–80
CAS
Article
Google Scholar
Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H (2007) Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta Biomembranes 1768:1717–1726
CAS
Article
Google Scholar
Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H (2010) Differential conformational behaviors of alpha-mycolic acids in Langmuir monolayers and computer simulations. Chem Phys Lipids 163:569–579
CAS
Article
Google Scholar
Villeneuve M (2012) Characteristic conformational behaviors of representative mycolic acids in the interfacial monolayer. In: Cardona PJ (ed) Understanding tuberculosis—Deciphering the secret life of the Bacilli. InTech, London, Chap. 17, pp 317–334
Villeneuve M, Kawai M, Horiuchi K, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE (2013) Conformational folding of mycobacterial methoxy- and ketomycolic acids facilitated by alpha-methyl trans-cyclopropane groups rather than cis-cyclopropane units. Microbiology 159:2405–2415
CAS
Article
Google Scholar
Hasegawa T (2004) Structural analysis of biological aliphatic compounds using surface-enhanced fourier transform raman spectroscopy. Biopolymers 73:457–462
CAS
Article
Google Scholar
Hasegawa T, Amino S, Kitamura S, Matsumoto L, Katada S, Nishijow J (2003) Study of the molecular conformation of alpha- and keto-mycolic acid monolayers by the Langmuir-Blodgett technique and fourier transform infrared reflection-absorption spectroscopy. Langmuir 19:105–109
CAS
Article
Google Scholar
Hasegawa T, Leblanc RM (2003) Aggregation properties of mycolic acid molecules in monolayer films: a comparative study of compounds from various acid-fast bacterial species. Biochim Biophys Acta 1617:89–95
CAS
Article
Google Scholar
Hasegawa T, Nishijo J, Watanabe M, Funayama K, Imae T (2000) Conformational characterization of alpha-mycolic acid in a monolayer film by the langmuir-Blodgett technique and atomic force microscopy. Langmuir 16:7325–7330
CAS
Article
Google Scholar
Groenewald W, Baird MS, Verschoor JA, Minnikin DE, Croft AK (2014) Differential spontaneous folding of mycolic acids from Mycobacterium tuberculosis. Chem Phys Lipids 180:15–22
CAS
Article
Google Scholar
Schmidt JR, Polik WF (2004) Webmo Pro, WebMO, Holland, MI
Youngs TGA (2010) Aten—an application for the creation, editing, and visualization of coordinates for glasses, liquids, crystals, and molecules. J Comput Chem 31:639–648
CAS
PubMed
Google Scholar
Apol E, Apostolov R, Berendsen HJC, Buuren AV, Bjelkmar P, Drunen RVFA, Groenhof G, Kasson P, Larsson P, Meulenhoff P, Murtola T, Pall S, Pronk S, Schulz R, Shirts M, Sijbers A, Tieleman P, Hess B, Spoel DVD, Lindahl E (1991–2000) GROMACS Version 4.5.4, University of Groningen, Netherlands
Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447
CAS
Article
Google Scholar
Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317
CAS
Article
Google Scholar
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718
Article
Google Scholar
Wang LP, Van Voorhis T (2010) Communication: hybrid ensembles for improved force matching. J Chem Phys 133:231101
Article
Google Scholar
Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1563
CAS
Article
Google Scholar
Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs Jr WR, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174
CAS
Article
Google Scholar