A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT and AIM analysis

Abstract

The polyphenolic compound resveratrol, classified under stilbenes, offers a broad range of health advantages, including neuroprotection and playing a role in autophagy in the nervous system. However, resveratrol has poor water solubility and is soluble in the gel phase in liposomal membranes. The main aim of this work was to understand the nature of the interactions between resveratrol and water molecules. In the present study, we used the dispersion corrected density functional theory (DFT) method to study hydrogen bonding interactions. Eight different geometries of resveratrol-water complexes were identified by optimizing the geometries by placing water at various locations. We observed the two lowest energy structures to be isoenergetic. In most complexes, water interaction occurs with phenolic hydrogen as all the phenolic hydroxyl groups have identical Vs,max values. Energy decomposition analysis shows that the dispersion contribution was minimal in these complexes, while electrostatic and orbital contributions were larger. Complex formation between water and the resveratrol molecule results in a blue shift in the vibrational frequency, along with an increase in intensity due to the transfer of electron density. The hydrogen bonds in the resveratrol–water complexes have closed-shell interactions with a medium-to-strong bonding nature. Noncovalent index analysis of the complexes shows that, in addition to hydrogen bonding, electrostatic and van der Waal’s interactions play a key role in stabilizing the complexes.

Noncovalent index analysis showing that, in addition to hydrogen bonding, electrostatic and van der Waal’s interactions play a major role in stabilizing resveratrol-water complexes

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreia ICFR (2018) Crit Rev Food Sci Nutr 58:942

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Akinwumi BC, Bordun K-AM, Anderson HD (2018) Int J Mol Sci 19:792

    Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    Zhao J, Davis LC, Verpoorte R (2005) Biotechnol Adv 23:283

    CAS  Article  Google Scholar 

  4. 4.

    Oliviero F, Scanu A, Zamudio-Cuevas Y, Punzi L, Spinella P (2017) J Sci Food Agric 98:1653

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Salucci S, Burattini S, Giordano FM, Lucarini S, Diamantini G, Falcieri E (2017) J Med Food 20:410

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ko J-H, Sethi G, Um J-Y, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS (2017) Int J Mol Sci 18:2589

    Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Fei Q, Kent D, Botello-Smith WM, Nur F, Nur S, Alsamarah A, Chatterjee P, Lambros M, Luo Y (2018) Sci Rep 8:1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z, Wan Z, Liu C, Mei X (2017) Neuroscience 348:241

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N, Nabavi SM (2017) Mol Neurobiol 54:2622

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA (2017) Plants 6:42

    Article  CAS  PubMed Central  Google Scholar 

  11. 11.

    Mena P, Carlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Rio DD (2016) Molecules 21:1576

    Article  CAS  PubMed Central  Google Scholar 

  12. 12.

    Li X-Z, Walker B, Michaelides A (2011) Proc Natl Acad Sci U S A 108:6369

    CAS  Article  PubMed Central  Google Scholar 

  13. 13.

    Giberti F, Hassanali AA, Ceriotti M, Parrinello M (2014) J Phys Chem B 118:13226

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    McKenzie RH, Bekker C, Athokpam B, Ramesh SG (2014) J Chem Phys 140:174508

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Ceriotti M, Fang W, Kusalik PG, McKenzie RH, Michaelides A, Morales MA, Markland TE (2016) Chem Rev 116:7529

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Raugei S, Klein ML (2003) J Am Chem Soc 125:8992

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wilkins DM, Manolopoulos DE, Pipolo S, Laage D, Hynes JT (2017) J Phys Chem Lett 8:2602

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Sappati S, Hassanali A, Gebauer R, Ghosh P (2016) J Chem Phys 145:205102

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Bonechi C, Martini S, Ciani L, Lamponi S, Rebmann H, Rossi C, Ristori S (2012) PLoS One 7:e41438

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    de Ghellinck A, Shen C, Fragneto G, Klösgen B (2015) Colloids Surf B: Biointerfaces 134:65

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Neves AR, Nunes C, Amenitsch H, Reis S (2016) Soft Matter 12:2118

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wesołowska O, Kuzdzał M, Strancar J, Michalak K (2009) Biochim Biophys Acta 1788:1851

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Star-overov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Strat-mann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian G09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  24. 24.

    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

    CAS  Article  Google Scholar 

  25. 25.

    Venkataramanan NS (2016) J Mol Model 22:151

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) J Chem Theory Comput 9(2013):3364

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Simon M, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024

    CAS  Article  Google Scholar 

  28. 28.

    Boys SF, Bernardi F (1970) Mol Phys 19:553

    CAS  Article  Google Scholar 

  29. 29.

    Venkataramanan NS, Suvitha A (2017) J Incl Phenom Macrocycl Chem 88:53

    CAS  Article  Google Scholar 

  30. 30.

    Weinhold F, Carpenter JE (1988) The structure of small molecules and ions. In: Naaman R, Vager Z (eds) Plenum, New York, pp 227–236

    Google Scholar 

  31. 31.

    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    CAS  Article  Google Scholar 

  32. 32.

    Venkataramanan NS, Suvitha A, Kawazoe Y (2017) J Mol Graph Model 78:48

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Venkataramanan NS, Suvitha A (2018) J Mol Graph Model 81:50

    CAS  Article  Google Scholar 

  34. 34.

    (2017) AIMAll (Version 17.01.25), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA

  35. 35.

    Venkataramanan NS, Suvitha A (2017) J Phys Chem B 121:4733

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Venkataramanan NS, Suvitha A, Kawazoe Y (2018) J Mol Liq 249:454

    CAS  Article  Google Scholar 

  37. 37.

    Politzer P, Lane P, Murray JS (2016) Crystals 6:7

    Article  CAS  Google Scholar 

  38. 38.

    Politzer P, Murray JS (2002) Theor Chem Accounts 108:134

    CAS  Article  Google Scholar 

  39. 39.

    Makarewicz E, Gordon AJ, Mierzwicki K, Latajka Z, Berski S (2014) J Phys Chem A 118:3980

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Swalina C, Wang Q, Chakraborty A, Hammes-Schiffer S (2007) J Phys Chem A 111:2206

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X (2013) Science 342:611

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    von Hopffgarten M, Frenking G (2012) WIREs Comput Mol Sci 2:43

    Article  CAS  Google Scholar 

  43. 43.

    Zheng Y-Z, Zhou Y, Liang Q, Chen D-F, Guo R (2016) J Mol Model 22:257

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Zheng Y-Z, Xu J, Liang Q, Chen D-F, Guo R, Fu Z-M (2017) J Mol Model 23:245

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    McDowell SAC, Buckingham AD (2005) J Am Chem Soc 127:15515

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Raghavendra B, Mandal PK, Arunan E (2006) Phys Chem Chem Phys 8:5276

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Özsoy H, Uras-Aytemiz N, Blaci F (2018) J Mol Model 24:23

    Article  CAS  Google Scholar 

  48. 48.

    Esrafili MD, Sadr-Mousavi A (2018) Chem Phys Lett 698:1

    CAS  Article  Google Scholar 

  49. 49.

    Lande DN, Bhadane SA, Gejji SP (2017) J Phys Chem A 121:1814

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20:30076

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Politzer P, Murray JS, Clark T, Resnati G (2017) Phys Chem Chem Phys 19:32166

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

N.S.V. thanks Science and Engineering Research Board-Department of Science and Technology (SERB-DST), India for funding through a project (EMR-II-SB/S1/PC-047/2013).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Suvitha or N. S. Venkataramanan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suvitha, A., Venkataramanan, N.S., Sahara, R. et al. A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT and AIM analysis. J Mol Model 25, 56 (2019). https://doi.org/10.1007/s00894-019-3941-7

Download citation

Keywords

  • Alkaloids
  • DFT
  • Extraction
  • H-bonding
  • Water