Skip to main content
Log in

Noble gas inserted compounds of borazine and its derivative B3N3R6: structures and bonding

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemistry computations were performed at the MP2 and B3LYP levels of theory using the basis sets aug-cc-pVDZ and def2-TZVPPD to study the noble gas (Ng) compounds formed by insertion of a Ng atom (Kr, Xe, Rn) into the B–H/F and N–H/F bonds of inorganic benzene B3N3H6 and its fluorine derivative B3N3F6. The geometrical structures were optimized and vibrational analysis was carried out to demonstrate these structures being local minima on the potential energy surface. The thermodynamic properties of the formation process of Ng compounds were calculated. A series of theoretical methods based on the wavefunction analysis, including NBO, AIM and ELF methods and energy decomposition analysis, was used to investigate the bonding nature of the noble gas atoms and the properties of the Ng compounds. The N–Ng bond was found to be stronger than the B–Ng bond, but the B–Ng bond is of typical covalent character and σ-donation from the Ng atom to the ring B atom makes the predominant contribution towards stability of the B-Ng bond. NICS calculation shows that these Ng-containing compounds are of weak π-aromaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartlett N (1962) Xenon hexafluoroplatinate (V) XE+[PTF6]. Proc Chem Soc 1962(6):197–236

  2. Pettersson M, Nieminen J, Khriachtchev L, Räsänen M (1997) The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe. J Chem Phys 107(20):8423–8431

    Article  CAS  Google Scholar 

  3. Pettersson M, Lundell J, Khriachtchev L, Esa Isoniemi A, Räsänen M (1998) HXeSH, the first example of a xenon−sulfur bond. J Am Chem Soc 120(31):7979–7980

    Article  CAS  Google Scholar 

  4. Pettersson M, Khriachtchev L, Jan Lundell A, Räsänen M (1999) A chemical compound formed from water and xenon: HXeOH. J Am Chem Soc 121(50):11904–11905

    Article  CAS  Google Scholar 

  5. Evans CJ, Rubinoff DS, Gerry MCL (2000) Noble gas metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar AuF and Ar AuBr. Phys Chem Chem Phys 2(18):3943–3948

    Article  CAS  Google Scholar 

  6. Evans CJ, Gerry MCL (2000) The microwave spectra and structures of Ar–AgX (X=F,cl,Br). J Chem Phys 112(3):1321–1329

    Article  CAS  Google Scholar 

  7. Reynard LM, Evans CJ, Gerry MC (2001) Microwave Spectrum, structure, and hyperfine constants of Kr–AgCl: formation of a weak Kr–Ag covalent bond. J Mol Spectrosc 206(1):33–40

    Article  CAS  Google Scholar 

  8. Chen JL, Yang CY, Lin HJ, Hu WP (2013) Theoretical prediction of new noble-gas molecules FNgBNR (ng = Ar, Kr, and Xe; R = H, CH3, CCH, CHCH2, F, and OH). Phys Chem Chem Phys 15(24):9701–9709

    Article  CAS  Google Scholar 

  9. Li J, Bursten BE, Liang B, Andrews L (2002) Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. Science 295(5563):2242–2245

    Article  CAS  Google Scholar 

  10. Arppe T, Khriachtchev L, Lignell A, Domanskaya AV, Räsänen M (2012) Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. Inorg Chem 51(7):4398–4402

    Article  CAS  Google Scholar 

  11. Li TH, Mou CH, Huiru Chen A, Hu WP (2005) Theoretical prediction of Noble gas containing anions FNgO- (ng = he, Ar, and Kr). J Am Chem Soc 127(25):9241–9245

    Article  Google Scholar 

  12. Ghanty TK (2006) How strong is the interaction between a noble gas atom and a noble metal atom in the insertion compounds MNgF (M=cu and ag, and ng=Ar, Kr, and Xe)? J Chem Phys 124(12):55–34

    Article  Google Scholar 

  13. Zhang Q, Chen M, Zhou M, Andrada DM, Frenking G (2015) Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO3 and a comparison with NgBeO (ng = he, ne, Ar, Kr, Xe). J Phys Chem A 119(11):2543–2552

    Article  CAS  Google Scholar 

  14. Manna D, Ghosh A, Ghanty TK (2013) Theoretical prediction of XRgCO(+) ions (X = F, cl, and Rg = Ar, Kr, Xe). J Phys Chem A 117(51):14282–14292

    Article  CAS  Google Scholar 

  15. Li QZ, Liu WM, Li R, Li WZ, Cheng JB, Gong BA (2013) Influence of insertion of a noble gas atom on halogen bonding in H2O···XCCNgF and H3N···XCCNgF (X = cl and Br; ng = Ar, Kr, and Xe) complexes. Struct Chem 24(1):25–31

    Article  CAS  Google Scholar 

  16. Evans CJ, Lesarri A, Gerry MCL (2000) Noble gas−metal chemical bonds. Microwave spectra, geometries, and nuclear quadrupole coupling constants of Ar−AuCl and Kr−AuCl. J Am Chem Soc 122(25):6100–6105

    Article  CAS  Google Scholar 

  17. Khriachtchev L, Pettersson M, Runeberg N, Lundell J, Räsänen M (2000) A stable argon compound. Nature 406(6798):874–876

    Article  CAS  Google Scholar 

  18. Pettersson M, Lundell J, Räsänen M (1995) Neutral rare-gas containing charge-transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe. J Chem Phys 103(1):205–210

    Article  CAS  Google Scholar 

  19. Khriachtchev L, Isokoski K, Cohen A, Räsänen M, Gerber RB (2008) A small neutral molecule with two Noble-gas atoms: HXeOXeH. Cheminform 39(33):6114–6118

    Article  Google Scholar 

  20. Tsivion E, Gerber RB (2011) Stability of noble-gas hydrocarbons in an organic liquid-like environment: HXeCCH in acetylene. Phys Chem Chem Phys 13(43):19601–19606

    Article  CAS  Google Scholar 

  21. Schröder D, Schwarz H, Jan Hrušák A, Pyykkö P (1998) Cationic gold(I) complexes of xenon and of ligands containing the donor atoms oxygen, nitrogen, phosphorus, and sulfur. Inorg Chem 37(37):624–632

    Article  Google Scholar 

  22. Pyykkoe P (1995) Predicted chemical bonds between rare gases and au+. J Am Chem Soc 117(7):2067–2070

    Article  CAS  Google Scholar 

  23. Gerber RB (2004) Formation of novel rare-gas molecules in low-temperature matrices. Annu Rev Phys Chem 55:55–78

    Article  CAS  Google Scholar 

  24. Grochala W (2007) Atypical compounds of gases, which have been called ‘noble. Cheminform 36(10):1632–1655

    CAS  Google Scholar 

  25. Ghanty TK (2005) Insertion of noble-gas atom (Kr and Xe) into noble-metal molecules (AuF and AuOH): are they stable? J Chem Phys 123(7):218–234

    Article  Google Scholar 

  26. Jayasekharan T, Ghanty TK (2006) Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, cl, and Br]: an ab initio investigation. J Chem Phys 124(16):758–734

    Article  Google Scholar 

  27. Jayasekharan T, Ghanty TK (2007) Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. J Chem Phys 127(11):114314

    Article  CAS  Google Scholar 

  28. Justik MW (2008) Halogens and noble gases. Annual reports section “a”. Inorg Chem 104:134–144

    CAS  Google Scholar 

  29. Jayasekharan T, Ghanty TK (2008) Prediction of metastable metal-rare gas fluorides: FMRgF (M=be and mg; Rg=Ar, Kr and Xe). J Chem Phys 128(14):874–834

    Article  Google Scholar 

  30. Ghosh A, Manna D, Ghanty TK (2015) Theoretical prediction of noble gas inserted thioformyl cations: HNgCSâ â° (ng = he, ne, Ar, Kr, and Xe). J Phys Chem A 119(11):2233–2243

    Article  CAS  Google Scholar 

  31. Khriachtchev L, Pettersson M, Lignell A, Räsänen M (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123(35):8610–8611

    Article  CAS  Google Scholar 

  32. Avramopoulos A, Li J, Holzmann N, Frenking G, Papadopoulos MG (2011) On the stability, electronic structure, and nonlinear optical properties of HXeOXeF and FXeOXeF. J Phys Chem A 115(36):10226–10236

    Article  CAS  Google Scholar 

  33. Goetschel CT, Loos KR (1972) Reaction of xenon with dioxygenyl tetrafluoroborate. Preparation of FXe-BF2. J Am Chem Soc 94(9):3018–3021

    Article  CAS  Google Scholar 

  34. Chen W, Chen GH, Wu D, Wang Q (2016) BNg3F3: the first three noble gas atoms inserted into mono-centric neutral compounds - a theoretical study. Phys Chem Chem Phys 18(26):17534–17545

    Article  CAS  Google Scholar 

  35. Kato T, Yamabe T (2005) The effects of H–F and H–D substitutions on Jahn–teller effects and charge transfer in the monocations of B, N-substituted acenes. Chem Phys 315(1):109–120

    Article  CAS  Google Scholar 

  36. Kato T, Yamabe T (2004) The effect of atomic substitution on electron-phonon interactions in negatively charged B, N-substituted acenes. J Chem Phys 121(1):501–509

    Article  CAS  Google Scholar 

  37. Stock A, Pohland E (1926) Borwasserstoffe, IX.: B3N3H6. Eur J Inorg Chem 59(9):2215–2223

    Google Scholar 

  38. Kaldor A, Porter RF (1971) Infrared spectra of the pyrolysis products of borane carbonyl in an argon matrix. J Am Chem Soc 93(9):103–114

    Article  Google Scholar 

  39. Kartha VB, Krishnamachari SLNG, Subramaniam CR (1967) The infrared spectra of borazine and its isotopic species. Assignment of the a2″ fundamental modes. J Mol Spectrosc 23(2):149–157

    Article  CAS  Google Scholar 

  40. Verma K, Viswanathan KS (2017) The borazine dimer: the case of a dihydrogen bond competing with a classical hydrogen bond. Phys Chem Chem Phys 19(29):19067–19074

    Article  CAS  Google Scholar 

  41. Rol B, Maulitz AH, Peter S (2010) Solid-state Borazine: does it deserve to be entiteled “inorganic benzene” ? Eur J Inorg Chem 127(10):1887–1889

    Google Scholar 

  42. Steiner E, And PWF, Havenith RWA (2002) Current densities of localized and delocalized electrons in molecules. J Phys Chem A 106(106):7048–7056

    Article  CAS  Google Scholar 

  43. Jug K (1983) A bond order approach to ring current and aromaticity. J Org Chem 48(8):1344–1348

    Article  CAS  Google Scholar 

  44. PVRS HJ, And VGM, Malkina‡ OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119(51):12669–12670

    Article  Google Scholar 

  45. Madura ID, Krygowski TM, Cyranski MK (1999) ChemInform abstract: structural aspects of the aromaticity of cyclic π-electron systems with BN bonds. Cheminform 30(12):14913–14918

    Google Scholar 

  46. Jemmis ED, Kiran B (2010) Aromaticity in X3Y3H6 (X = B, Al, Ga; Y = N, P, as), X3Z3H3 (Z = O, S, se), and phosphazenes. Theoretical study of the structures, energetics, and magnetic properties. Cheminform 29(29):2110–2116

    Article  Google Scholar 

  47. Kiran B, And AKP, Jemmis ED (2001) Is Borazine aromatic? Unusual parallel behavior between hydrocarbons and corresponding B−N analogues. Inorg Chem 40(14):3615

    Article  CAS  Google Scholar 

  48. Engelberts JJ, Havenith RWA, van Lenthe JH, Jenneskens LW, Fowler PW (2005) The electronic structure of inorganic benzenes: valence bond and ring-current descriptions. Inorg Chem 44(15):5266–5272

    Article  CAS  Google Scholar 

  49. Steinmann SN, Jana DF, Wu JI, Pv S, Mo Y, Corminboeuf C (2010) Direct assessment of electron delocalization using NMR chemical shifts. Angew Chem 48(52):9828–9833

    Article  Google Scholar 

  50. Fowler PW, Steiner E (1997) Ring currents and aromaticity of monocyclic π-Electron systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5 , C7H7 +, C3N3F3, C6H3F3, and C6F6. J Phys Chem 101(7):1409–1413

    Article  CAS  Google Scholar 

  51. Baranac-Stojanović M, Stojanović M (2013) Substituent effects on cyclic electron delocalization in symmetric B- and N-trisubstituted borazine derivatives. RSC Adv 3(46):24108–24117

    Article  Google Scholar 

  52. Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE (2000) CVD growth of boron nitride nanotubes. Chem Mater 12(7):1808–1810

    Article  CAS  Google Scholar 

  53. Parker JK, Davis SR (1997) Ab initio study of the relative energies and properties of Fluoroborazines. J Phys Chem A 101(49):9410–9414

    Article  CAS  Google Scholar 

  54. Sham IH, Kwok CC, Che CM, Zhu N (2005) Borazine materials for organic optoelectronic applications. Chem Commun 28(28):3547–3549

    Article  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A. Gaussian Inc, Wallingford, CT

    Google Scholar 

  56. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789

    Article  CAS  Google Scholar 

  57. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220(1–2):122–128

    Article  CAS  Google Scholar 

  58. Kendall RA, Jr THD, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  59. Weiss S, Michaud H, Prietzel H, Krommer H (2003) Synthesis of 3,1-Benzothiazines by cyclisation of 2-Thioformylamino­diphenylacetylenes. Synlett 2003(14):2231–2233

    Google Scholar 

  60. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  Google Scholar 

  61. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.[J]. J Chem Phys 132(15):154104

    Article  Google Scholar 

  62. Scuseria GE (1991) The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD(T): application to C + 3. Chem Phys Lett 176(1):27–35

    Article  CAS  Google Scholar 

  63. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  64. Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84(10):5687–5705

    Article  CAS  Google Scholar 

  65. Laidig KE, Bader RFW (1990) Properties of atoms in molecules: atomic polarizabilities. J Chem Phys 93(10):7213–7224

    Article  CAS  Google Scholar 

  66. Popelier PLA (2000) Atoms in molecules : an introduction. Pearson Education, London

    Book  Google Scholar 

  67. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  68. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683–686

    Article  CAS  Google Scholar 

  69. Schleyer PVR, Maerker C, Dransfeld A, Haijun Jiao A (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    Article  CAS  Google Scholar 

  70. Baerends EJ et al (2013) ADF2013.01, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam

    Google Scholar 

  71. Alvarez S (2013) A cartography of the van der Waals territories. Dalton Trans 42(24):8617–8636

    Article  CAS  Google Scholar 

  72. Bondi A (1964) van der Waals Volumes and Radii. J Phys Chem 68(3):441–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Yong Li.

Electronic supplementary material

ESM 1

(DOCX 1367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, M., Li, Z.Z. & Li, A.Y. Noble gas inserted compounds of borazine and its derivative B3N3R6: structures and bonding. J Mol Model 24, 326 (2018). https://doi.org/10.1007/s00894-018-3860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3860-z

Keywords

Navigation