Skip to main content
Log in

Cleavage of the β–O–4 bond in a lignin model compound using the acidic ionic liquid 1-H-3-methylimidazolium chloride as catalyst: a DFT mechanistic study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding the mechanism for the catalyzed cleavage of the β–O–4 ether linkage in lignin is crucial to developing efficient strategies for depolymerizing lignin. In this work, veratrylglycerol-β-guaiacyl ether (VG) was used as a lignin model compound in a theoretical investigation of the mechanism for the cleavage of the β–O–4 bond as catalyzed by the acidic ionic liquid (IL) 1-H-3-methylimidazolium chloride ([HMIM]Cl). The reaction was found to involve two processes—dehydration and hydrolysis—in which the cation functions as a Brønsted acid (donating a proton) and the anion acts as a nucleophile (promoting dehydration) or interacts with the substrate through hydrogen bonding, stabilizing the intermediate. These roles of the anion and cation of [HMIM]Cl explain why the [HMIM]Cl medium catalyzes the depolymerization of lignin. In addition, calculations predict that adding formaldehyde during the depolymerization of VG prevents the condensation of VG without significantly altering the mechanism of depolymerization, thus suggesting a method for potentially improving the efficiency of lignin depolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5

Similar content being viewed by others

References

  1. Harris D, DeBolt S (2010) Plant Biotechnol J 8:244

  2. Geilen F, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 122:5642

  3. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick Jr WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484

  4. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552

  5. Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Science 354:329

  6. Bruijnincx PC, Weckhuysen BM (2014) Nat Chem 6:1035

  7. Barth T (2008) Chem Eng Technol 31:736

  8. Molinari V, Clavel G, Graglia M, Antonietti M, Esposito D (2016) ACS Catal 6:1663

  9. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan JA, Wyman CE (2014) Science 344:1246843

  10. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Nature 515:249

  11. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Plant Physiol 153:895

  12. Gierer J (1980) Wood Sci Technol 14:241

  13. Britt PF, Buchanan III AC, Malcolm EA Oak Ridge National Lab., TN (United States)

  14. Kandanarachchi PH, Autrey T, Franz JA (2002) J Org Chem 67:7937

  15. Chu S, Subrahmanyam AV, Huber GW (2013) Green Chem 15:125

  16. Britt PF, Buchanan AC, Cooney MJ, Martineau DR (2000) J Org Chem. 65:1376

  17. Huo W, Li W, Zhang M, Fan W, Chang HM, Jameel H (2014) Catal Lett 144:1159

  18. Zhao HB, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597

  19. Tan SSY, MacFarlane DR (2009) In: Kirchner B (ed) Ionic liquids, vol 290. Springer, Berlin, p 311

  20. Binder JB, Raines RT (2009) J Am Chem Soc 131:1979

  21. Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) ChemSusChem 3:1078

  22. Cox BJ, Jia S, Zhang ZC, Ekerdt JG (2011) Polym Degrad Stab 96:426

  23. Zhang ZC (2013) WIREs Energy Environ 2:655

  24. Cox BJ, Ekerdt JG (2012) Bioresour Technol 118:584

  25. Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Biomass Bioenergy 33:1122

  26. Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2011) Ind Eng Chem Res 50:849

  27. Kubo S, Hashida K, Yamada T, Hishiyama S, Magara K, Kishino M, Hosoya S (2008) J Wood Chem Technol 28:84

  28. Wen JL, Yuan TQ, Sun SL, Xu F, Sun RC (2014) Green Chem 16:181

  29. Prado R, Brandt A, Erdocia X, Hallet J, Welton T, Labidi J (2016) Green Chem 18:834

  30. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 14:4974

  31. Graenacher C (1934) US Patent No. 1,943,176. US Patent and Trademark Office, Washington, DC

  32. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

  33. Fukui K (1981) Acc Chem Res 14:363

  34. Barone V, Cossi M (1998) J Phys Chem A 102:1995

  35. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

  36. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

  37. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

  38. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 21703123, 21433006, and 21773139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongju Zhang.

Electronic supplementary material

ESM 1

(DOC 2888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Han, Z., Fu, L. et al. Cleavage of the β–O–4 bond in a lignin model compound using the acidic ionic liquid 1-H-3-methylimidazolium chloride as catalyst: a DFT mechanistic study. J Mol Model 24, 322 (2018). https://doi.org/10.1007/s00894-018-3854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3854-x

Keywords

Navigation