Skip to main content
Log in

Effect of Metal Catalysts on Bond Cleavage Reactions of Lignin Model Compounds in Supercritical Water

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignin depolymerization into its aromatic monomers is necessary for the valorization of lignocellulosic biomass, but cleavage of the C–O ether bonds and C–C bonds between the monomers is challenging. In this study, we investigated bond cleavage reactions of benzyl phenyl ether, diphenyl ether, and biphenyl, which served as models for lignin compounds with α–O–4, 4–O–5, and 5–5 linkages, respectively, by using various metal catalysts in supercritical water at 673 K and a water density of 0.5 g cm−3 without added hydrogen gas. Benzyl phenyl ether was decomposed without catalyst. We found that palladium, platinum, and rhodium catalysts supported on carbon showed activity for cleavage of the C–O ether bonds in benzyl phenyl ether and diphenyl ether but not for the bonds between the aromatic units of biphenyl. Using anisole as a model compound, we also found that methoxy groups, which are present in lignin containing coniferyl and sinapyl alcohol monomers, were converted into phenol groups or were decomposed. The reaction conditions described herein have great potential utility for the conversion of lignin, which can be decomposed and dissolved in supercritical water, into valuable aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  Google Scholar 

  2. Kobayashi, H., Ohta, H., Fukuoka, A.: Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal. Sci. Technol. 2, 869–883 (2012)

    Article  Google Scholar 

  3. Yamaguchi, A.: Biomass valorization in high-temperature liquid water. J. Jpn. Petrol. Inst. 57, 155–163 (2014)

    Article  Google Scholar 

  4. Kobayashi, H., Komanoya, T., Guha, S.K., Hara, K., Fukuoka, A.: Conversion of cellulose into renewable chemicals by supported metal catalysis. Appl. Catal. A 409–410, 13–20 (2011)

    Article  Google Scholar 

  5. Besson, M., Gallezot, P., Pinel, C.: Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014)

    Article  Google Scholar 

  6. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M.: The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010)

    Article  Google Scholar 

  7. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., Barta, K.: Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018)

    Article  Google Scholar 

  8. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T.: Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015)

    Article  Google Scholar 

  9. Ohi, H., Kishino, M.: Cleavage of C alpha-C beta bonds of lignin model compounds by nitrite and nitric acid. Holzforschung 51, 343–348 (1997)

    Article  Google Scholar 

  10. Jia, S., Cox, B.J., Guo, X., Zhang, Z.C., Ekerdt, J.G.: Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. ChemSusChem 3, 1078–1084 (2010)

    Article  Google Scholar 

  11. Sturgeon, M.R., Kim, S., Lawrence, K., Paton, R.S., Chmely, S.C., Nimlos, M., Foust, T.D., Beckham, G.T.: A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2, 472–485 (2014)

    Article  Google Scholar 

  12. Roberts, V., Fendt, S., Lemonidou, A.A., Li, X., Lercher, J.A.: Influence of alkali carbonates on benzyl phenyl ether cleavage pathways in superheated water. Appl. Catal. B 95, 71–77 (2010)

    Article  Google Scholar 

  13. Yuan, Z., Cheng, S., Leitch, M., Xu, C.C.: Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresour. Technol. 101, 9308–9313 (2010)

    Article  Google Scholar 

  14. Roberts, V.M., Stein, V., Reiner, T., Lemonidou, A., Li, X., Lercher, J.A.: Towards quantitative catalytic lignin depolymerization. Chem. Eur. J. 17, 5939–5948 (2011)

    Article  Google Scholar 

  15. Sedai, G., Díaz-Urrutia, C., Baker, R.T., Wu, R., Silks, L.A.P., Hanson, S.K.: Aerobic oxidation of β-1 lignin model compounds with copper and oxovanadium catalysts. ACS Catal. 3, 3111–3122 (2013)

    Article  Google Scholar 

  16. Sedai, B., Baker, R.T.: Copper catalysts for selective C-C bond cleavage of β-O-4 lignin model compounds. Adv. Synth. Catal. 356, 3563–3574 (2014)

    Article  Google Scholar 

  17. Patil, N.D., Yao, S.G., Meier, M.S., Mobley, J.K., Crocker, M.: Selective cleavage of the Cα–Cβ linkage in lignin model compounds via Baeyer–Villiger oxidation. Org. Biomol. Chem. 13, 3243–3254 (2015)

    Article  Google Scholar 

  18. Luo, F.-X., Zhou, T.-G., Li, X., Luo, Y.-L., Shi, Z.-J.: Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Org. Chem. Front. 2, 1066–1070 (2015)

    Article  Google Scholar 

  19. Álvarez-Bercedo, P., Martin, R.: Ni-Catalyzed reduction of inert C–O bonds: a new strategy for using aryl ethers as easily removable directing groups. J. Am. Chem. Soc. 132, 17352–17353 (2010)

    Article  Google Scholar 

  20. Tobisu, M., Yamakawa, K., Shimasaki, T., Chatani, N.: Nickel-catalyzed reductive cleavage of aryl–oxygen bonds in alkoxy- and pivaloxyarenes using hydrosilanes as a mild reducing agent. Chem. Commun. 47, 2946–2948 (2011)

    Article  Google Scholar 

  21. Cornella, J., Gómez-Bengoa, E., Martin, R.: Combined experimental and theoretical study on the reductive cleavage of inert C–O bonds with silanes: ruling out a classical Ni(0)/Ni(II) catalytic couple and evidence for Ni(I) intermediates. J. Am. Chem. Soc. 135, 1997–2009 (2013)

    Article  Google Scholar 

  22. Kusumoto, S., Nozaki, K.: Direct and selective hydrogenolysis of arenols and aryl methyl ethers. Nat. Commun. 6, 6296 (2015)

    Article  Google Scholar 

  23. He, J., Zhao, C., Lercher, J.A.: Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012)

    Article  Google Scholar 

  24. Zhao, C., Lercher, J.A.: Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. ChemCatChem 4, 64–68 (2012)

    Article  Google Scholar 

  25. Zhang, J., Teo, J., Chen, X., Asakura, H., Tanaka, T., Teramura, K., Yan, N.: A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 4, 1574–1583 (2014)

    Article  Google Scholar 

  26. Ohta, H., Yamamoto, K., Hayashi, M., Hamasaka, G., Uozumi, Y., Watanabe, Y.: Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5. Chem. Commun. 51, 17000–17003 (2015)

    Article  Google Scholar 

  27. Kozliak, E.I., Kubátová, A., Artemyeva, A.A., Nagel, E., Zhang, C., Rajappagowda, R.B., Smirnova, A.L.: Thermal liquefaction of lignin to aromatics: efficiency, selectivity, and product analysis. ACS Sustain. Chem. Eng. 4, 5106–5122 (2016)

    Article  Google Scholar 

  28. Kloekhorst, A., Wildschut, J., Heeres, H.J.: Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst. Catal. Sci. Technol. 4, 2367–2377 (2014)

    Article  Google Scholar 

  29. Kloekhorst, A., Heeres, H.J.: Catalytic hydrotreatment of alcell lignin using supported Ru, Pd, and Cu catalysts. ACS Sustain. Chem. Eng. 3, 1905–1914 (2015)

    Article  Google Scholar 

  30. Osada, M., Hiyoshi, N., Sato, O., Arai, K., Shirai, M.: Reaction pathway for catalytic gasification of lignin in presence of sulfur in supercritical water. Energy Fuels 21, 1854–1858 (2007)

    Article  Google Scholar 

  31. Yamaguchi, A., Hiyoshi, N., Sato, O., Osada, M., Shirai, M.: EXAFS study on structural change of charcoal-supported ruthenium catalysts during lignin gasification in supercritical water. Catal. Lett. 122, 188–195 (2008)

    Article  Google Scholar 

  32. Yamaguchi, A., Hiyoshi, N., Sato, O., Osada, M., Shirai, M.: Lignin gasification over supported ruthenium trivalent salts in supercritical water. Energy Fuels 22, 1485–1492 (2008)

    Article  Google Scholar 

  33. Yamaguchi, A., Hiyoshi, N., Sato, O., Bando, K.K., Osada, M., Shirai, M.: Hydrogen production from woody Biomass Over Supported Metal Catalysts In Supercritical Water. Catal. Today 146, 192–195 (2009)

    Article  Google Scholar 

  34. Yamaguchi, A., Mimura, N., Shirai, M., Sato, O.: Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water. Sci. Rep. 7, 46172 (2017)

    Article  Google Scholar 

  35. Wagner, W., Prub, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  Google Scholar 

  36. Yamaguchi, A., Hiyoshi, N., Sato, O., Osada, M., Shirai, M.: Lignin gasification over charcoal-supported palladium and nickel bimetal catalysts in supercritical water. Chem. Lett. 39, 1251–1253 (2010)

    Article  Google Scholar 

  37. Shiju, N.R., Guliants, V.V.: Recent developments in catalysis using nanostructured materials. Appl. Catal. A 356, 1–17 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a JSPS KAKENHI Grant (JP17H00803) and by the Japan Association of Chemical Innovation (JACI) through the New Chemical Technology Research Encouragement Award, Step-Up Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritomo Yamaguchi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Mimura, N., Shirai, M. et al. Effect of Metal Catalysts on Bond Cleavage Reactions of Lignin Model Compounds in Supercritical Water. Waste Biomass Valor 11, 669–674 (2020). https://doi.org/10.1007/s12649-019-00647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00647-4

Keywords

Navigation