Skip to main content
Log in

Molecular dynamics study on deformation and mechanics of nanoscale Au/Cu multilayers under indentation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effects of individual layer thickness, indentation velocity, and temperature on the mechanical properties and mechanics of nanoscale Au/Cu multilayers under indentation were studied using molecular dynamics simulations based on the many-body embedded-atom potential. The simulation results show that layer interfaces act as strong barriers that resist the propagation of dislocations, even at an extremely small individual layer thickness of 3 nm. The number of dislocations increases significantly and the growth of dislocations decreases with decreasing individual layer thickness. There is no clear relationship between the magnitude of the required indentation force and the number of film layers; however, the average required indentation force increases with increasing indentation velocity and decreasing temperature. During indentation at a relatively low velocity, dislocation propagation is more significant; the number of disordered atoms significantly increases at a relatively high indentation velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  CAS  Google Scholar 

  2. Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19:639–655

    Article  Google Scholar 

  3. Li YP, Zhu XF, Zhang GP, Tan J, Wang W, Wu B (2010) Investigation of deformation instability of Au/Cu multilayers by indentation. Philos Mag 90:3049–3067

    Article  CAS  Google Scholar 

  4. Kang BC, Kim HY, Kwon OY, Hong SH (2007) Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scr Mater 57:703–706

    Article  CAS  Google Scholar 

  5. Wu CD, Jiang WX (2017) Atomistic simulation of effects of temperature and velocity on tensile-deformed Au/Cu/Au/Cu films. Thin Solid Films 638:258–263

    Article  CAS  Google Scholar 

  6. Wu CD, Tsa HW (2017) Atomistic simulation study of tensile deformation in nanocrystalline and single-crystal Au. J Mol Model 23:114–1-6

  7. Rabady RI, Ababneh A (2014) Global optimal design of optical multilayer thin-film filters using particle swarm optimization. Optik 125:548–553

    Article  Google Scholar 

  8. Li X, Bhushan B (2001) Micro/nanomechanical and tribological studies of bulk and thin-film materials used in magnetic recording heads. Thin Solid Films 398-399:313–319

    Article  CAS  Google Scholar 

  9. Xu ZH, Li X (2006) Sample size effect on nanoindentation of micro−/nanostructures. Acta Mater 54:1699–1703

    Article  CAS  Google Scholar 

  10. Li X, Bhushan B, Takashima K, Baek CW, Kim YK (2003) Mechanical characterization of mirco/nanoscale structure for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97:481–494

    Article  CAS  PubMed  Google Scholar 

  11. Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD (1998) Structure and mechanical properties of cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr Mater 39:555–560

    Article  CAS  Google Scholar 

  12. Zhu XF, Zhang GP (2009) Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J Phys D Appl Phys 42:055411–1-6

  13. Wen SP, Zong RL, Zeng F, Gao Y, Pan F (2008) Investigation of the wear behaviors of Ag/cu multilayers by nanoscratch. Wear 265:1808–1813

    Article  CAS  Google Scholar 

  14. Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara NA (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4:1696–1703

    Article  CAS  PubMed  Google Scholar 

  15. Zhang GP, Liu Y, Wang W (2006) Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl Phys Lett 88:013105

  16. Cao Y, Zhang J, Liang Y, Yu F, Sun T (2010) Mechanical and tribological properties of Ni/Al multilayers—a molecular dynamics study. Appl Surf Sci 257:847–851

    Article  CAS  Google Scholar 

  17. Cheng D, Yan ZJ, Yan L (2007) Misfit dislocation network in cu/Ni multilayers and its behaviors during scratching. Thin Solid Films 515:3698–3703

    Article  CAS  Google Scholar 

  18. Zhang RF, Germann TC, Liu XY, Wang J, Beyerlein IJ (2014) Layer size effect on the shock compression behavior of fcc-bcc nanolaminates. Acta Mater 79:74–83

    Article  CAS  Google Scholar 

  19. Zhang RF, Wang J, Beyerlein IJ, Misra A, Germann TC (2012) Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Mater 60:2855–2865

    Article  CAS  Google Scholar 

  20. Wang J, Zhou CZ, Beyerlein IJ, Shao S (2014) Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66(1):102–113

    Article  Google Scholar 

  21. Wang J, Zhang RF, Zhou CZ, Beyerlein IJ, Misra A (2014) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centeredcubic bicrystal interfaces. Int J Plast 53:40–55

    Article  CAS  Google Scholar 

  22. Beyerlein IJ, Wang J, Zhang RF (2013) Interface-dependent nucleation in nanostructured layered composites. APL Mater 1:032112

    Article  CAS  Google Scholar 

  23. Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28

    Article  CAS  Google Scholar 

  24. Fu T, Peng X, Chen X, Weng S, Hu N, Li Q, Wang Z (2016) Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci Rep 6:35665

  25. Fang TH, Wu JH (2008) Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comput Mater Sci 43:785–790

    Article  CAS  Google Scholar 

  26. Medyanik SN, Shao S (2009) Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput Mater Sci 45:1129–1133

    Article  CAS  Google Scholar 

  27. Christopher D, Smith R, Richter A (2001) Atomistic modelling of nanoindentation in iron and silver. Nanotechnology 12:372–383

    Article  CAS  Google Scholar 

  28. Holm EA, Olmsted DL, Foiles SM (2010) Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr Mater 63:905–908

    Article  CAS  Google Scholar 

  29. Honeycutt JD, Andemen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963

    Article  CAS  Google Scholar 

  30. Faken D, Jonsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci 2:279–286

    Article  CAS  Google Scholar 

  31. Yuan L, Xu Z, Shan D, Guo B (2013) Molecular dynamics study on the equal biaxial tension of Cu/Ag bilayer films. Appl Surf Sci 282:450–455

    Article  CAS  Google Scholar 

  32. Fang TH, Weng CI, Chang JG (2003) Molecular dynamics analysis of temperature effects on nanoindentation measurement. Mater Sci Eng A: Struct Mater Prop Microstruct 357:7–12

    Article  CAS  Google Scholar 

  33. Roy D, Manna A, Sen Gupta SP (1972) The application of the Morse potential function in ordered Cu3Au and Au3Cu alloys. J Phys F: Met Phys 2:1092–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of Taiwan under grants MOST 106-2221-E-033-023 and MOST 104-2221-E-033-062-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Da Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CD., Jiang, WX. Molecular dynamics study on deformation and mechanics of nanoscale Au/Cu multilayers under indentation. J Mol Model 24, 253 (2018). https://doi.org/10.1007/s00894-018-3792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3792-7

Keywords

Navigation