Skip to main content
Log in

Co-Tetraphenylporphyrin (co-TPP) in TM-TPP (TM = Fe, Co, Ni, Cu, and Zn) series: a new optical material under DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A detailed investigation of the structure, electronic, spectroscopic, and optical properties of a series of transition metal-doped tetraphenylporphyrins (TM-TPP; TM = Fe, Co, Ni, Cu and Zn) is performed under density functional framework. The structure and stability of tetraphenylporphyrin (TPP) and TM-TPPs are understood with HOMO-LUMO gap, chemical hardness, and binding energies of the transition metals to the compound. Optical properties of TPP and TM-TPP series are assessed with relevant optical absorption spectra. A couple of visible active compounds, viz. Co-TPP and Ni-TPP, are reported for the first time for future opto-electronic applications. To gain insight on the possible synthesis of these compounds, we have analyzed frontier molecular orbitals (FMOs) as well as infra-red spectra.

Optical absorption spectra of TPP and TM-TPPs, and infrared spectra of TPP merged with Co-TPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poulos TL (2014) Heme enzyme structure and function. Chem Rev 114(7):3919–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zoldan VC, Faccio R, Pasa AA (2015) N and p type character of single molecule diodes. Sci Rep 5:8350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang Y, Kim H, Kahng S, Kim Y (2016) Axial coordination and electronic structure of diatomic NO, CO, and O2 molecules adsorbed onto co-tetraphenylporphyrin on au(111), ag(111), and cu(111): a density-functional theory study. Dalton Trans. 45:16673–16681

    Article  CAS  PubMed  Google Scholar 

  4. Mousawi A, Poriel C, Dumur F, Zoufaily J, Hamieh T, Fouassier J, Lalevée J (2017) Zinc tetraphenylporphyrin as high-performance visible light photoinitiator of cationic photosensitive resins for LED projector 3D printing applications. Macromolecules 50:746–753

    Article  CAS  Google Scholar 

  5. Wang X, Wang H, Yang Y, He Y, Zhang L, Li Y, Li X (2009) Zinc tetraphenylporphyrin− fluorene branched copolymers: synthesis and light-emitting properties. Macromolecules 43(2):709–715

    Article  CAS  Google Scholar 

  6. Mosinger J, Lang K, Kubát P, Sýkora J, Hof M, Plíštil L, Mosinger B (2009) Photofunctional polyurethane nanofabrics doped by zinc tetraphenylporphyrin and zinc phthalocyanine photosensitizers. J Fluoresc 19(4):705–713

    Article  CAS  PubMed  Google Scholar 

  7. Lian S, Kodaimati MS, Weiss EA (2018) Photocatalytically active superstructures of quantum dots and iron porphyrins for reduction of CO2 to CO in water. ACS Nano 12(1):568–575

    Article  CAS  PubMed  Google Scholar 

  8. Flechtner K, Kretschmann A, Steinrück HP, Gottfried JM (2007) NO-induced reversible switching of the electronic interaction between a porphyrin-coordinated cobalt ion and a silver surface. J Am Chem Soc 129(40):12110–12111

    Article  CAS  PubMed  Google Scholar 

  9. Deng K, Zhou J, Li X (2013) Noncovalent nanohybrid of cobalt tetraphenylporphyrin with graphene for simultaneous detection of ascorbic acid, dopamine, and uric acid. Electrochim Acta 114:341–346

    Article  CAS  Google Scholar 

  10. Kim J, Dae-Hyun BAEK, Kyounghoon LEE, Soonjae PYO (2017) Flexible and transparent gas sensor based on mos2 and method for manufacturing the same. U.S. patent application no. 15/188,412

  11. Choudhury MSH, Kato S, Kishi N, Soga T (2017) Nickel tetraphenylporphyrin doping into ZnO nanoparticles for flexible dye-sensitized solar cell application. Jpn J Appl Phys 56(4S):04CS05

    Article  Google Scholar 

  12. Kubendhiran S, Sakthinathan S, Chen SM, Tamizhdurai P, Shanthi K, Karuppiah C (2017) Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J Colloid Interface Sci 497:207–216

    Article  CAS  PubMed  Google Scholar 

  13. Elistratova MA, Zakharova IB, Romanov NM, Panevin VY, Kvyatkovskii OE (2016) Photoluminescence spectra of thin films of ZnTPP–C60 and CuTPP–C60 molecular complexes. Semiconductors 50(9):1191–1197

    Article  CAS  Google Scholar 

  14. Roy DR, Shah EV, Roy SM (2018) Optical activity of co-porphyrin in the light of IR and Raman spectroscopy: a critical DFT investigation. Spectrochim Acta A 190:121–128

    Article  CAS  Google Scholar 

  15. Liao M-S, Scheiner S (2002) Electronic structure and bonding in metal porphyrins, metal=Fe, co, Ni, cu, Zn. J Chem Phys 117:205–219

    Article  CAS  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):864

    Article  Google Scholar 

  17. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133

    Article  Google Scholar 

  18. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York: 333

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  20. Hay PJ, Dunning Jr TH (1976) Modern theoretical chemistry, Vol. 3. In: Schaefer III HF (ed) Methods of electronic structure theory. Plenum, pp 1–New York

  21. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth P, Salvador GA, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz J, Cioslowski JV, Fox DJ (2009) Gaussian 09 , Revision E.01. Gaussian, Inc, Wallingford CT

    Google Scholar 

  23. Chattaraj PK, Roy DR, Elango M, Subramanian V (2005) Stability and reactivity of all-metal aromatic and antiaromatic systems in light of the principles of maximum hardness and minimum polarizability. J Phys Chem A 109:9590–9597

    Article  CAS  PubMed  Google Scholar 

  24. Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson and Ross, Stroutsberg, PA

    Google Scholar 

  25. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  26. Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Ann Rev Phys Chem 55:427–455

    Article  CAS  Google Scholar 

  27. Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323

    Article  CAS  PubMed  Google Scholar 

  28. Fogarasi G, Pulay P (1985) In vibrational spectra and structure. Durig JR (Ed.), Elsevier: New York, Vol 13

  29. Califano S (1976) Vibrational states. Wiley, New York

    Google Scholar 

  30. Swinehart DF (1962) The Beer-Lambert law. J Chem Educ 39:333

  31. Analytical Chemistry: An Introduction (Saunders Golden Sunburst Series) (1999) Skoog DA, West DM, Holler FJ (Ed)

  32. Castillo MV, Romano E, Raschi AB, Brandán SA (2015) Structural and vibrational investigation on a Benzoxazin derivative with potential antibacterial activity, chapter 6. Front Comput Chem Comput Appl Drug Design Biomolec Syst 2:250–280

    Google Scholar 

  33. Wäckerlin C, Chylarecka D, Kleibert A, Müller K, Iacovita C, Nolting F, Jung TA, Ballav N (2010) Controlling spins in adsorbed molecules by a chemical switch. Nat Commun 1(61):1–7

    Article  CAS  PubMed Central  Google Scholar 

  34. Ali ME, Sanyal B, Oppeneer PM (2009) Tuning the magnetic interaction between manganese porphyrins and ferromagnetic co substrate through dedicated control of the adsorption. J Phys Chem C 113:14381–14383

    Article  CAS  Google Scholar 

  35. Oppeneer PM, Panchmatia PM, Sanyal B, Eriksson O, Ali ME (2009) Nature of the magnetic interaction between Fe-porphyrin molecules and ferromagnetic surfaces. Prog Surf Sci 84:18–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DRR is thankful to the SERB, New Delhi, for financial support (Grant No. EMR/2016/005830). EVS and KS are thankful to MHRD, New Delhi, for their institute research fellowships (FIR-DS13PH003 and FIR-D17PH001), VK is thankful to the SERB, New Delhi, for his fellowship (SVNIT-SERB-4/226), BKS is thankful for her UGC-RGNF fellowship (RGNF-2017-18-SC-GUJ-35487) and VPC is thankful to DST, New Delhi, for her DST-INSPIRE fellowship (IF170621).

The authors dedicate this work to Professor Pratim Kumar Chattaraj on his 60th birth anniversary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Roy.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, E.V., Kumar, V., Sharma, B.K. et al. Co-Tetraphenylporphyrin (co-TPP) in TM-TPP (TM = Fe, Co, Ni, Cu, and Zn) series: a new optical material under DFT. J Mol Model 24, 239 (2018). https://doi.org/10.1007/s00894-018-3783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3783-8

Keywords

Navigation