Skip to main content

Advertisement

Log in

Chiral recognition of liquid phase dimers from gamma-valerolactone racemic mixture

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Gamma-valerolactone (GVL) is a cyclic ester that can be considered a green alternative in chemical processes due to its environmentally friendly physical and chemical properties and low production cost from biomass. Although GVL is a chiral solvent, it is usually used as a racemic mixture, instead of its homochiral forms, which might improve its performance in enantioselective synthesis and chiral separation chromatographic techniques. This report presents the development and validation of an atomistic force field optimized to reproduce GVL liquid-phase properties via Monte Carlo (MC) and molecular dynamics (MD) simulation methods. The optimized force field improved the description of the interactions between pairs of molecules, which is a key aspect for a proper assessment of subtle interactions between the enantiomeric forms of GVL. Inspection of radial distribution functions (RDF) for correlations between RR, SS, and RS interactions found within GVL racemic mixture shows very subtle differences at the first solvation shell. Average interaction energies \(E_{int}^{RR}\), \(E_{int}^{SS}\) and \(E_{int}^{RS}\) for RR, SS, and RS dimer ensembles, respectively, were calculated with force field and also HF-3c and PBEh-3c quantum chemistry methods. For each methodology, resulting values obtained for \(E_{int}^{RR}\) and \(E_{int}^{SS}\) were almost the same and more negative than \(E_{int}^{RS}\). Also, the average energy fluctuation obtained for RR and SS dimers were higher than the one obtained for RS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Capello C, Fischer U, Hungerbühler K (2007) Green Chem 9:927

    Article  CAS  Google Scholar 

  2. Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-fernández JM (2012) Catal Today 195:162

    Article  CAS  Google Scholar 

  3. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238

    Article  Google Scholar 

  4. Marinetti LJ, Leavell BJ, Jones CM, Hepler BR, Isenschmid DS, Commissaris RL (2012) Pharmacol Biochem Behav 101:602

    Article  CAS  PubMed  Google Scholar 

  5. Alonso DM, Wettstein SG, Dumesic JA (2013) Green Chem 15:584

    Article  CAS  Google Scholar 

  6. Qi L, Horváth IT (2012) ACS Catal 2:2247

    Article  CAS  Google Scholar 

  7. Qi L, Mui YF, Lo SW, Lui MY, Akien GR, Horváth IT (2014) ACS Catalysis 4:1470

    Article  CAS  Google Scholar 

  8. Fegyverneki D, Orha L, Láng G, Horváth IT (2010) Tetrahedron 66:1078

    Article  CAS  Google Scholar 

  9. Tomioka K, Ishiguro T, Koga K (1980) Tetrahedron Lett 21:2973

    Article  CAS  Google Scholar 

  10. Gorissen HJ, Hoeck JPV, Mockel AM, Journée GH, Delatour C, Libert VR (1992) Chirality 4:286

    Article  CAS  Google Scholar 

  11. Baldwin JE, Adlington RM, Ramcharitar SH (1992) Synlett 1992:875

    Article  Google Scholar 

  12. Stangeland EL, Sammakia T (2004) J Org Chem 69:2381

    Article  CAS  PubMed  Google Scholar 

  13. Mori K (1975) Tetrahedron 31:3011

    Article  CAS  Google Scholar 

  14. Koerwitz FL, Hammond GB, Wiemer DF (1989) J Org Chem 54:738

    Article  CAS  Google Scholar 

  15. Tukacs JM, Fridrich B, Dibó G, Székely E, Mika LT (2015) Green Chem 17:5189

    Article  CAS  Google Scholar 

  16. Aparicio S, Alcalde R (2009) Phys Chem Chem Phys 11:6455

    Article  CAS  PubMed  Google Scholar 

  17. Havasi D, Mizsey P, Mika LT (2016) J Chem Eng Data 61:1502

    Article  CAS  Google Scholar 

  18. Klajmon M, Řehák K, Matoušová M, Morávek P (2016) J Chem Eng Data 61:391

    Article  CAS  Google Scholar 

  19. Zaitseva A, Pokki JP, Le HQ, Alopaeus V, Sixta H (2016) J Chem Eng Data 61:881

    Article  CAS  Google Scholar 

  20. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123

    Article  CAS  PubMed  Google Scholar 

  21. Neese F (2012) Wiley Interdiscip Rev: Comput Mol Sci 2:73

    CAS  Google Scholar 

  22. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  23. Perdew J (1986) Phys Rev B 33:8822

    Article  CAS  Google Scholar 

  24. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  25. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  PubMed  Google Scholar 

  26. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  27. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  28. Kendall RA, Früchtl HA (1997) Theor Chem Acc 97:158

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  30. Berendsen H, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43

    Article  CAS  Google Scholar 

  31. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701

    Article  CAS  PubMed  Google Scholar 

  32. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Bioinformatics 29:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Article  CAS  Google Scholar 

  34. Lide DR (2009) CRC handbook of chemistry and physics, 90th edn, chap 3. CRC Press, Cleveland

    Google Scholar 

  35. Emel’yanenko VN, Kozlova SA, Verevkin SP, Roganov GN (2008) J Chem Thermodyn 40:911

    Article  CAS  Google Scholar 

  36. Freitas LCG (2009) J Braz Chem Soc 20:1541

    Article  CAS  Google Scholar 

  37. Freitas LCG, Cordeiro JMM (1995) J Mol Struct: THEOCHEM 335:189

    Article  Google Scholar 

  38. Freitas LCG, Cordeiro JMM, Garbujo FLL (1999) J Mol Liq 79:1

    Article  CAS  Google Scholar 

  39. Belletato P, Freitas LCG, Arêas EPG, Santos PS (1999) Phys Chem Chem Phys 1:4769

    Article  CAS  Google Scholar 

  40. Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, van der Spoel D (2012) J Chem Theory Comput 8:61

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Hou T (2011) J Chem Theory Comput 7:2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Price MLP, Ostrovsky D, Jorgensen WL (2001) J Comput Chem 22:1340

    Article  CAS  Google Scholar 

  43. Stewart JJP (2012) J Mol Model 19(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. MOPAC2012, Stewart JPP (2012) Stewart Computational Chemistry, Colorado Springs, CO, USA HTTP://OpenMOPAC.net

  45. Davidson N (1962) Statistical mechanics. McGraw-Hill Book Company, New York

    Google Scholar 

  46. Craig DP, Mellor DP (1976) Top Curr Chem 0:1

    CAS  PubMed  Google Scholar 

  47. Portmann S, Inauen A, Lüthi HP, Leutwyler S (2000) J Chem Phys 113:9577

    Article  CAS  Google Scholar 

  48. Su Z, Borho N, Xu Y (2006) J Am Chem Soc 128:17126

    Article  CAS  PubMed  Google Scholar 

  49. Garten S, Biedermann PU, Topiol S, Agranat I (2009) Electrostatic chiral distinction: Tetrahedral model dimers. Chirality 22(7):662–674

    Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  CAS  PubMed  Google Scholar 

  51. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  52. Kruse H, Grimme S (2012) J Chem Phys 136:154101

    Article  CAS  PubMed  Google Scholar 

  53. Sure R, Grimme S (2013) J Comput Chem 34:1672

    Article  CAS  PubMed  Google Scholar 

  54. Grimme S, Brandenburg JG, Bannwarth C, Hansen A (2015) J Chem Phys 143(5):054107

    Article  CAS  PubMed  Google Scholar 

  55. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th ed. Weinheim:Wiley-VCH, New York

  56. North M, Villuendas P (2010) Org Lett 12:2378

    Article  CAS  PubMed  Google Scholar 

  57. Tulashie SK, von Langermann J, Lorenz H, Seidel-Morgenstern A (2011) Cryst Growth Des 11:240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian funding agencies CAPES, CNPq-INCT (573742/2008-1) and FAPESP (2012/15147-4 and 2013/072962) for financial support. FMC is grateful to CNPq for the award of a scholarship and AFM is grateful to MEC/PET for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Carlos G. Freitas.

Additional information

Supplementary Information

Supporting information available: A file is provided with a detailed description of the GVL structure and force-field parameters used in this paper.

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 87.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombari, F.M., de Moura, A.F. & Freitas, L.C.G. Chiral recognition of liquid phase dimers from gamma-valerolactone racemic mixture. J Mol Model 24, 215 (2018). https://doi.org/10.1007/s00894-018-3744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3744-2

Keywords

Navigation