Skip to main content

Advertisement

Log in

Exploring the differences and similarities between urea and thermally driven denaturation of bovine serum albumin: intermolecular forces and solvation preferences

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interactions of bovine serum albumin (BSA) with urea/water were investigated by computer simulation. It was revealed that the BSA-hydrophobic residues in urea solutions favored contact with urea more than with water. Energy decomposition analysis showed that van der Waals energy was the dominant driving force behind urea affinity for hydrophobic residues, whereas coulombic attraction was largely responsible for water affinity for these residues. Meanwhile, urea–BSA hydrogen bond energies were found to be weaker than water–BSA hydrogen bond energies. The greater strength of water–BSA hydrogen bonds than urea–BSA hydrogen bonds, and the opposing preferential interaction between the BSA and urea suggest that disruption of hydrophobic interaction predominates urea–protein denaturation. In pure water, hydrophobic residues showed aggregation tendencies at 323 K, suggesting an increase in hydrophobicity, while at 353 K the residues were partly denatured due to loss of hydrogen bonds; thus, disruption of hydrophobic interactions appeared to contribute less to thermal denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–l
Fig. 3a–e
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stumpe MC, Grubmuller H (2007) Interaction of urea with amino acids: implications for urea-induced protein denaturation. J Am Chem Soc 129:16126–16131. https://doi.org/10.1021/ja076216j

    Article  CAS  Google Scholar 

  2. Stumpe MC, Grubmuller H (2007) Aqueous urea solutions: structure, energetics, and urea aggregation. J Phys Chem B 111:6220–6228. https://doi.org/10.1021/jp066474n

    Article  CAS  Google Scholar 

  3. Totosaus A, Montejano GJ, Salazar JA, Guerrero I (2002) A review of physical and chemical protein-gel induction. Intl J Food Sci Tech 37:589–601. https://doi.org/10.1046/j.1365-2621.2002.00623.x

    Article  CAS  Google Scholar 

  4. Nakai S (1983) Structure-function relationships of food proteins: with an emphasis on the importance of protein hydrophobicity. J Agric Food Chem 31:676–683. https://doi.org/10.1021/jf00118a001

    Article  CAS  Google Scholar 

  5. Bennion BJ, Daggett V (2003) The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA 100:5142–5147. https://doi.org/10.1073/pnas.0930122100

    Article  CAS  Google Scholar 

  6. Rabilloud T, Luche S, Santoni V, Chevallet M (2007) Detergents and chaotropes for protein solubilisation before two-dimensional electrophoresis. Methods Mol Biol 355:111–119. https://doi.org/10.1385/1-59745-227-0:111

    CAS  Google Scholar 

  7. Klimov DK, Straub JE, Thirumalai D (2004) Aqueous urea solution destabilizes Aβ16–22 oligomers. Proc Natl Acad Sci USA 111:14760–14765. https://doi.org/10.1073/pnas.0404570101

    Article  Google Scholar 

  8. Zangi R, Zhou R, Berne BJ (2009) Urea’s action on hydrophobic interactions. J Am Chem Soc 131:1535–1541. https://doi.org/10.1021/ja807887g

    Article  CAS  Google Scholar 

  9. Ma B, Tie Z, Zou D, Li J, Wang W (2006) Urea and thermal-induced unfolding of bovine serum albumin. Mod Phys Lett B 20:1909–1916. https://doi.org/10.1142/S0217984906012171

    Article  CAS  Google Scholar 

  10. Graziano G (2001) On the solubility of aliphatic hydrocarbons in 7 M aqueous urea. J Phys Chem B 105:2632–2637. https://doi.org/10.1021/jp004335e

    Article  CAS  Google Scholar 

  11. Zhang Z, Zhu Y, Shi Y (2001) Molecular dynamics simulation of urea and thermal-induced denaturation of S-peptide analogue. Biophys Chem 89:145–162. https://doi.org/10.1016/S0301-4622(00)00227-1

    Article  CAS  Google Scholar 

  12. Zou Q, Habermann-Rottinghaus M, Murphy PK (1998) Urea effects on protein stability: hydrogen bonding and hydrophobic effects. Proteins Struct Funct Genet 31:107–115. https://doi.org/10.1002/(SICI)1097-0134(19980501)31:2<107::AID-PROT1>3.0.CO;2-J

    Article  CAS  Google Scholar 

  13. Steinke N, Gillams RJ, Pardo LC, Lorenz DC, SE ML (2016) Atomic scale insights into urea-peptide interactions in solution. Phys Chem Chem Phys 18:3862–3870. https://doi.org/10.1039/C5CP06646H

    Article  CAS  Google Scholar 

  14. Hammami F, Ghalla H, Nasr S (2015) Intermolecular hydrogen bonds in urea–water complexes: DFT, NBO, and AIM analysis. Comp Theor Chem 1070:40–47. https://doi.org/10.1016/j.comptc.2015.07.018

    Article  CAS  Google Scholar 

  15. Paul S, Paul S (2015) Molecular insights into the role of aqueous trehalose solution on temperature-induced protein denaturation. J Phys Chem B 119:1598–1610. https://doi.org/10.1021/jp510423n

    Article  CAS  Google Scholar 

  16. Hayashi Y, Katsumoto Y, Omori S, Kishii N, Yasuda A (2007) Liquid structure of the urea-water system studied by dielectric spectroscopy. J Phys Chem B 111:1076–1080. https://doi.org/10.1021/jp065291y

    Article  CAS  Google Scholar 

  17. Aoki K, Hiramatsu K, Kimura K, Shoji K, Yoshitoyo N, Kenji S (1969) Heat denaturation of bovine serum albumin, analysis by acrylamide-gel electrophoresis. Bull Inst Chem Res Kyoto Univ 47:4

    Google Scholar 

  18. Soper AK (2000) The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys 258:121–137. https://doi.org/10.1016/S0301-0104(00)00179-8

    Article  CAS  Google Scholar 

  19. Grigson CWB, Tompsett MF (1966) Determination of radial distribution functions by elastic electron diffraction. Nature 210:86–87. https://doi.org/10.1038/210086a0

    Article  CAS  Google Scholar 

  20. Gereben O, Pusztai L (2015) Investigation of the structure of ethanol−water mixtures by molecular dynamics simulation I: analyses concerning the hydrogen-bonded pairs. J Phys Chem B 119:3070–3084. https://doi.org/10.1021/jp510490y

    Article  CAS  Google Scholar 

  21. Rozmanov D, Baoukina S, Tieleman PD (2014) Density based visualization for molecular simulation. Faraday Discuss 169:225–243. https://doi.org/10.1039/C3FD00124E

    Article  CAS  Google Scholar 

  22. Bujacz A (2012) Structures of bovine, equine and leporine serum albumin. Acta Cryst D68:1278–1289. https://doi.org/10.1107/S0907444912027047

    Google Scholar 

  23. Kitamura S, Hvorecny KL, Niu J, Hammock BD, Madden DR, Morisseau C (2016) Rational design of potent and selective inhibitors of an epoxide hydrolase virulence factor from Pseudomonas aeruginosa. J Med Chem 59:4790–4799. https://doi.org/10.1021/acs.jmedchem.6b00173

    Article  CAS  Google Scholar 

  24. van Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262. https://doi.org/10.1007/BF00355047

    Article  Google Scholar 

  25. Lemkul JA, Allen WJ, Bevan DR (2010) Practical considerations for building Gromos-compatible small-molecule topologies. J Chem Inf Model 50:2221–2235. https://doi.org/10.1021/ci100335w

    Article  CAS  Google Scholar 

  26. GROMACS (2017) Groningen Machine for Chemical Simulations. http://www.gromacs.org/. Accessed 11 May 2017

  27. Musin RN, Mariam YH (2006) An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: trend in energetic versus geometrical consequences. J Phys Org Chem 19:425–444. https://doi.org/10.1002/poc.1102

    Article  CAS  Google Scholar 

  28. Schäfer H, Mark AE, van Gunsteren WF (2000) Absolute entropies from molecular dynamics simulation trajectories. J Chem Phys 113:7809–7817. https://doi.org/10.1063/1.1309534

    Article  Google Scholar 

  29. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  Google Scholar 

  30. Baler K, Martin OA, Carignano MA, Ameer GA, Vila JA, Szleifer I (2014) Electrostatic unfolding and interactions of albumin driven by pH changes: a molecular dynamics study. J Phys Chem B 118:921–930. https://doi.org/10.1021/jp409936v

    Article  CAS  Google Scholar 

  31. Schiffer CA, Caldwell JW, Kollman PA, Stroud RM (1993) Protein structure prediction with a combined solvation free energy molecular mechanics force field. Mol Simul 10:121–149. https://doi.org/10.1080/08927029308022162

    Article  Google Scholar 

  32. Niu X, Gao X, Wang H, Wang X, Wang S (2013) Insight into the dynamic interaction between different flavonoids and bovine serum albumin using molecular dynamics simulations and free energy calculations. J Mol Model 19:1039–1047. https://doi.org/10.1007/s00894-012-1649-z

    Article  CAS  Google Scholar 

  33. Stumpe MC, Grubmuller H (2008) Polar or apolar—the role of polarity for urea-induced protein denaturation. PLoS Comput Biol 4:11. https://doi.org/10.1371/journal.pcbi.1000221

    Article  Google Scholar 

  34. Candotti M, Pérez A, Ferrer-Costa C, Rueda M, Meyer T, Gelpí JL, Orozco M (2013) Exploring early stages of the chemical unfolding of proteins at the proteome scale. PLoS Comput Biol 9:12. https://doi.org/10.1371/journal.pcbi.1003393

    Article  Google Scholar 

  35. Ooi T, Oobatake M, Némethy G, Scheraga HA (1987) Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci USA 84:3086–3090

    Article  CAS  Google Scholar 

  36. Touw WG, Baakman C, Black J, Te Beek TAH, Krieger E, Joosten RP, Vriend G (2015) A series of PDB related databanks for everyday needs. Nucleic Acids Res 43:364–368. https://doi.org/10.1093/nar/gku1028

    Article  Google Scholar 

  37. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  Google Scholar 

  38. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16:273–284. https://doi.org/10.1002/jcc.540160303

    Article  CAS  Google Scholar 

  39. Monhemi H, Housaindokht MR, Moosavi-Movahedi AB, Bozorgmehr MR (2014) How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of candida antarctica lipase B in urea : choline chloride deep eutectic solvent. Phys Chem Chem Phys 16:14882–14893 https://10.1039/c4cp00503a

    Article  CAS  Google Scholar 

  40. Sokalingam S, Madan B, Raghunathan G, Lee S (2013) Deciphering the factors responsible for the stability of a GFP variant resistant to alkaline pH using molecular dynamics simulations. Biotechnol Bioprocess Eng 18:858–867. https://doi.org/10.1007/s12257-013-0309-1

    Article  CAS  Google Scholar 

  41. Heinig M, Frishman D (2004) Stride: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:500–502. https://doi.org/10.1093/nar/gkh429

    Article  Google Scholar 

  42. Nnyigide OS, Oh Y, Song H, Park E, Choi S, Hyun K (2017) Effect of urea on heat-induced- gelation of bovine serum albumin(BSA) studied by rheology and small angle neutron scattering. Korea-Aust Rheol J 29:101–113. https://doi.org/10.1007/s13367-017-0012-4

    Article  Google Scholar 

  43. Nozaki Y, Tanford C (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem 246:2211–2217

    CAS  Google Scholar 

  44. Nozaki Y, Tanford C (1970) Amino acid solubility and hydrophobic interactions in proteins. J Biol Chem 245:1648–1652

    CAS  Google Scholar 

  45. Sigma Aldrich (2017) Amino acids reference chart. http://www.sigmaaldrich.com/life-science/metabolomics/learning-center/amino-acid-reference-chart.html#hydro. Accessed 29 April 2017

  46. Lee S, Shek YL, Chalikian TV (2010) Urea interactions with protein groups: a volumetric study. Biopolymers 93:866–879. https://doi.org/10.1002/bip.21478

    Article  CAS  Google Scholar 

  47. Mancera RL, Buckinghama AD, Skipper NT (1997) The aggregation of methane in aqueous solution. Faraday Trans 93:2263–2267. https://doi.org/10.1039/A608381A

    Article  CAS  Google Scholar 

  48. Hua L, Zhou R, Thirumalai D, Berne BJ (2008) Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Natl Acad Sci USA 105:16928–16933. https://doi.org/10.1073/pnas.0808427105

    Article  CAS  Google Scholar 

  49. Bandyopadhyay D, Mohan S, Ghosh SK, Choudhury N (2014) Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J Phys Chem B 118:11757–11768. https://doi.org/10.1021/jp505147u

    Article  CAS  Google Scholar 

  50. Bandyopadhyay D, Bhanja K, Mohan S, Ghosh SK, Choudhury N (2015) Effects of concentration on like-charge pairing of guanidinium ions and on the structure of water: an all-atom molecular dynamics study. J Phys Chem B 119:11262–11274. https://doi.org/10.1021/acs.jpcb.5b03064

    Article  CAS  Google Scholar 

  51. Bandyopadhyay D, Mohan S, Ghosh SK, Choudhury N (2013) Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water. J Phys Chem B 117:8831–8843. https://doi.org/10.1021/jp404478y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program (2015R1D1A1A09057413) through the National Research Foundation of Korea (NRF) and BK21 PLUS Center for Advanced Chemical Technology (21A20131800002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nnyigide, O.S., Lee, SG. & Hyun, K. Exploring the differences and similarities between urea and thermally driven denaturation of bovine serum albumin: intermolecular forces and solvation preferences. J Mol Model 24, 75 (2018). https://doi.org/10.1007/s00894-018-3622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3622-y

Keywords

Navigation