Skip to main content

Advertisement

Log in

Insight into the dynamic interaction between different flavonoids and bovine serum albumin using molecular dynamics simulations and free energy calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the binding of Bovine serum albumin (BSA) with three flavonoids, kaempferol-3-O-a-L-rhamnopyranosyl-(1–3)-a-L-rhamnopyranosyl-(1–6)-b-D-galacto- pyranoside (drug 1),kaempfol-7-O-rhamnosyl-3-O-rutinoside (drug 2)andkaempferide-7-O-(4”-O-acetylrhamnosyl)-3-O-ruti- noside (drug 3) is investigated by molecular docking, molecular dynamics (MD) simulation, and binding free energy calculation. The free energies are consistent with available experimental results and suggest that the binding site of BSA-drug1 is more stable than those of BSA-drug2 and BSA-drug3. The energy decomposition analysis is performed and reveals that the electrostatic interactions play an important role in the stabilization of the binding site of BSA-drug1 while the van der Waals interactions contribute largely to stabilization of the binding site of BSA-drug2 and BSA-drug3. The key residues stabilizing the binding sites of BSA-drug1, BSA-drug2 and BSA-drug3 are identified based on the residue decomposition analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haghi G, Hatami A (2010) Simultaneous quantification of flavonoids and phenolic acids in plant materials by a newly developed isocratic high-performance liquid chromatography approach. J Agric Food Chem 58:10812–10816

    Article  CAS  Google Scholar 

  2. Rodrigues AS, Perez-Gregorio MR, Garcia-Falcon MS, Simal-Gandara J, Almeida DPF (2011) Effect of meteorological conditions on antioxidant flavonoids in Portuguese cultivars of white and red onions. Food Chem 124:303–308

    Article  CAS  Google Scholar 

  3. Arct J, Pytkowska K (2008) Flavonoids as components of biologically active cosmeceuticals. Clin Dermatol 26:347–357

    Article  Google Scholar 

  4. Kale A, Gawande S, Kotwal S (2008) Cancer phytotherapeutics: role for flavonoids at the cellular level. Phytother Res 22:567–577

    Article  CAS  Google Scholar 

  5. Zhang S, Yang X, Coburn RA, Morris ME (2005) Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol 70:627–639

    Article  CAS  Google Scholar 

  6. Kobori M, Masumoto S, Akimoto Y, Takahashi Y (2009) Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res 53:859–868

    Article  CAS  Google Scholar 

  7. Salas MP, Celiz G, Geronazzo H, Daz M, Resnik SL (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem 124:1411–1415

    Article  CAS  Google Scholar 

  8. Huang XH, Xiong PC, Xiong CM, Cai YL, Wei AH, Wang JP, Liang XF, Ruan JL (2010) In vitro and in vivo antitumor activity of Macrothelypteris torresiana and its acute/subacute oral toxicity. Phytomedicine 17:930–934

    Article  CAS  Google Scholar 

  9. Kim HJ, Lee SB, Park SK, Kim HM, Park YI, Dong MS (2005) Effects of hydroxy group numbers on the B-ring of 5,7-dihydroxyflavones on the differential inhibition of human CYP 1A and CYP1B1 enzymes. Arch Pharm Res 28:1114–1121

    Article  CAS  Google Scholar 

  10. Tsujimoto M, Horie M, Honda H, Takara K, Nishiguchi K (2009) The structure-activity correlation on the inhibitory effects of flavonoids on cytochrome P450 3A activity. Biol Pharm Bull 32:671–676

    Article  CAS  Google Scholar 

  11. Walle T (2007) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17:354–362

    Article  CAS  Google Scholar 

  12. Yang R, Zeng HJ, Yu LL, Chen XL, Qu LB, Li P (2010) The interaction of flavonoid-bsa and the relationship between molecular structure of flavonoids and their binding to BSA. Acta Chim Sin 68:1995–1999

    CAS  Google Scholar 

  13. Liu EH, Qi LW, Li P (2010) Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Molecules 15:9092–9103

    Article  CAS  Google Scholar 

  14. Huang BX, Kim HY, Dass C (2004) Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom 15:1237–1247

    Article  CAS  Google Scholar 

  15. Peters T (1985) Serum albumin. Adv Protein Chem 37:161–245

    Article  CAS  Google Scholar 

  16. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  Google Scholar 

  17. Bolli A, Marino M, Rimbach G, Fanali G, Fasano M, Ascenzi P (2010) Flavonoid binding to human serum albumin. Biochem Biophys Res Commun 398:444–449

    Article  CAS  Google Scholar 

  18. Matei L, Hillebrand M (2010) Interaction of kaemeferol with human serum albumin, a fluorescence and circular dichroism study. J Pharm Biomed Anal 51:768–773

    Article  CAS  Google Scholar 

  19. Wackerbarth H, Stoll T, Gebken S, Pelters C, Bindrich U (2009) Carotenoidprotein interaction as an approach for the formulation of functional food emulsions. Food Res Int 42:1254–1258

    Article  CAS  Google Scholar 

  20. Bi SY, Yan LL, Pang B, Wang Y (2012) Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique. J Lumin 132:132–140

    Article  CAS  Google Scholar 

  21. Zhang YP, Shi SY, Sun XR, Xiong X, Peng MJ (2011) The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect. J Inorg Biochem 105:1529–1537

    Article  CAS  Google Scholar 

  22. Shi XL, Li XW, Gui MY, Zhou HY, Yang RJ, Zhang HQ, Jin YR (2010) Studies on interaction between flavonoids and bovine serum albumin by spectral methods. J Lumin 130:637–644

    Article  CAS  Google Scholar 

  23. Altschul SF, Madden TL, Schfer AA, Zhang JZ, Miller DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  24. Wallner B, Elofsson A (2005) All are not equal: a benchmark of different homology modeling programs. Protein Sci 14:1315–1327

    Article  CAS  Google Scholar 

  25. Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS (2008) PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acid Res 36:202–209

    Article  Google Scholar 

  26. Hess B, Kutzner C, Van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  27. Frisch MJ et al. (2009) Gaussian 09, Wallingford, CT, Gaussian 09 Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  28. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  29. Hu R, Barbault F, Maurel F, Delamar M, Zhang R (2010) Molecular dynamics simulations of 2-amino-6-arylsulphonylbenzonitriles analogues as HIV inhibitors: interaction modes and binding free energies. Chem Biol Drug Des 76:518–526

    Article  CAS  Google Scholar 

  30. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput-Aided Mol Des 10:293–304

    Article  CAS  Google Scholar 

  31. Hu R, Barbault F, Delamar M, Zhang R (2009) Receptor- and ligand-based 3D-QSAR study for a series of non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 17:2400–2409

    Article  CAS  Google Scholar 

  32. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  33. Ryckaert JP (1997) Numerical integration of cartesian equations of motion of a system with constrained molecular dynamics of N-alkanes. J Chem Phys 23:327–341

    Google Scholar 

  34. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  35. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 2:247–260

    Article  Google Scholar 

  36. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  37. Vorontsov Ivan I, Miyashita Osamu (2010) Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-cyanovirin-N. J Comput Chem doi:10.1002/jcc.21683

  38. Jogalekar AS, Reiling S, Vaz RJ (2010) Identification of optimum computational protocols for modeling the aryl hydrocarbon receptor (AHR) and its interaction with ligands. Bioorg Med Chem Lett 20:6616–6619

    Article  CAS  Google Scholar 

  39. Swanson JMJ, Henchman RH, McCammon JA (2004) Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 86:67–74

    Article  CAS  Google Scholar 

  40. Thanyada R, Nadtanet N, Maturos M, Nopporn K, Pathumwadee Y, Arthitaya M, Supot H (2010) Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and venezuelan equine encephalitis viruses: Molecular dynamics simulations and free energy calculations J Mol Graph Model Published online

  41. Han WW, Wang Y, Luo Q, Feng Y, Niu XD (2011) Insights into a 3D homology Model of arylesterase: the key residues upon protein-ligand docking and mm_pbsa calculations. J Theor Comput Chem 10:165–177

    Article  CAS  Google Scholar 

  42. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  CAS  Google Scholar 

  43. Punkvang A, Saparpakorn P, Hannongbua S, Wolschann P, Beyer A, Pungpo P (2010) Investigating the structural basis of arylamides to improve potency against M. tuberculosis strain through molecular dynamics simulations. Eur J Med Chem 45:5585–5593

    Article  CAS  Google Scholar 

  44. Schaffner-Barbero C, Gil-Redondo R, Ruiz-Avila LB, Huecas S, Lappchen T, den Blaauwen T, Diaz JF, Morreale A, Andreu JM (2010) Insights into nucleotide recognition by cell division protein FtsZ from a mant-GTP competition assay and molecular dynamics. Biochemistry 49:10458–10472

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the research startup fund of Jilin University (No. 4305050102H8; No. 4305050102B5), the basic research and operational costs of Jilin University (No. 421031196604 and No. 450060445293), the Specialized Research Fund for the Doctoral Program of Higher Education (20090061120101), and the Natural Science Foundation of Jilin Province in China (20101552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, X., Gao, X., Wang, H. et al. Insight into the dynamic interaction between different flavonoids and bovine serum albumin using molecular dynamics simulations and free energy calculations. J Mol Model 19, 1039–1047 (2013). https://doi.org/10.1007/s00894-012-1649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1649-z

Keywords

Navigation