Skip to main content
Log in

Catalysis of the acetylene hydrochlorination reaction by Si-doped Au clusters: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanisms for the acetylene hydrochlorination reaction on pristine Au7 and Au8 clusters and on the Si-doped Au clusters Au6Si and Au7Si were systematically investigated via density functional theory using the PBE functional. The band gap (∆Eg) of the Au7Si cluster was found to smaller than that of its undoped equivalent (Au8), thus enhancing its catalytic activity, and Au7Si presented a significantly reduced activation barrier (16.69 kcal mol−1) for the acetylene hydrochlorination reaction compared with the pristine Au8 cluster (21.83 kcal mol−1). On the other hand, the activation barrier for the acetylene hydrochlorination reaction was not lower for the Au6Si cluster than for the pristine Au7 cluster because the band gap (∆Eg) of Au6Si was found to be larger than that of Au7. Hence, the current work shows that the catalytic activities of gold clusters can be systematically modified by doping them. Our findings also suggest how to enhance the acetylene hydrochlorination reaction by doping foreign atoms into Au clusters.

The Si-doped Au7Si cluster showed stronger catalytic activity for the acetylene hydrochlorination reaction compared with the pristine Au8 cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405

    Article  Google Scholar 

  2. Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295

    Article  CAS  Google Scholar 

  3. Yang B, Burch R, Hardacre C, Headdock G, Hu P (2012) Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation. ACS Catal 2:1027–1032

  4. Kim HY, Lee HM, Henkelman G (2011) CO oxidation mechanism on CeO2-supported Au nanoparticles. J Am Chem Soc 134:1560–1570

  5. Boronat M, Leyva-Pérez A, Corma A (2014) Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc Chem Res 47:834–844

  6. Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A Gen l291:21–31

  7. Manzoor D, Krishnamurty S, Pal S (2014) Effect of silicon doping on the reactivity and catalytic activity of gold clusters. J Phys Chem C 118:7501–7507

    Article  CAS  Google Scholar 

  8. Della Pina C, Falletta E, Prati L, Rossi M (2008) Selective oxidation using gold. Chem Soc Rev Chem Soc Rev 37:2077–2095

    Article  CAS  Google Scholar 

  9. Choudhary TV, Sivadinarayana C, Datye AK, Kumar D, Goodman DW (2003) Acetylene hydrogenation on Au-based catalysts. Catal Lett 8:1–8

  10. Huang CF, Zhu MY, Kang LH, Dai B (2014) A novel high-stability Au(III)/Schiff-based catalyst for acetylene hydrochlorination reaction. Catal Commun 54:61–65

  11. Huang CF, Zhu MY, Kang LH, Li XY, Dai B (2014) Active carbon supported TiO2–AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction. Chem Eng J 242:69–75

    Article  CAS  Google Scholar 

  12. Li XY, Pan XL, Yu L, Ren PJ, Wu X, Sun LT, Jiao F, Bao XH (2014) Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat Commun 5:3688

    CAS  Google Scholar 

  13. Li XY, Zhu MY, Dai B (2013) AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts. Appl Catal B Environ 142–143:234–240

    Article  Google Scholar 

  14. Bailie JE, Hutchings GJ (1999) Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem Commun 21:2151–2152

    Article  Google Scholar 

  15. Sakata K, Tada K, Yamada S, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M (2014) DFT calculations for aerobic oxidation of alcohols over neutral Au6 cluster. Mol Phys 112:385–392

    Article  CAS  Google Scholar 

  16. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 18:2058–2059

    Article  Google Scholar 

  17. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301:935–938

  18. Nkosi B, Coville NJ, Hutchings GJ (1988) Reactivation of a supported gold catalyst for acetylene hydrochlorination. J Chem Soc Chem Commun 1:71–72

    Article  Google Scholar 

  19. Nkosi B, Adams MD, Coville NJ, Hutchings GJ (1991) Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. J Catal 128:378–386

    Article  CAS  Google Scholar 

  20. Wang Y, Zhu MY, Kang LH, Dai B (2014) Neutral Au n (n = 3–10) clusters catalyze acetylene hydrochlorination: a density functional theory study. RSC Adv 4:38466–38473

  21. Pichugina DA, Nikolaev SA, Mukhamedzyanova DF, Kuz’menko NE (2014) Quantum-chemical modeling of ethylene and acetylene adsorption on gold clusters. Rus J Phys Chem A 88:959–964

    Article  CAS  Google Scholar 

  22. Ferraro F, Pérez-Torres JF, Hadad CZ (2015) Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry. J Phys Chem C 119:7755–7764

    Article  CAS  Google Scholar 

  23. Li XB, Wang HY, Yang XD, Zhu ZH, Tang YJ (2007) Size dependence of the structures and energetic and electronic properties of gold clusters. J Chem Phys 126:084505

    Article  Google Scholar 

  24. Li YF, Mao AJ, Li Y, Kuang XY (2012) Density functional study on size-dependent structures, stabilities, electronic and magnetic properties of Au n M (M = Al and Si, n = 1–9) clusters: comparison with pure gold clusters. J Mol Model 18:3061–3072

  25. Bürgel C, Reilly NM, Johnson GE, Mitrić R, Kimble ML, Castleman AW, Bonačić-Koutecký V (2008) Influence of charge state on the mechanism of CO oxidation on gold clusters. J Am Chem Soc 130:1694–1698

    Article  Google Scholar 

  26. Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) Catalytic CO oxidation by free Au2 : experiment and theory. J Am Chem Soc 125:10437–10445

    Article  CAS  Google Scholar 

  27. Conte M, Carley AF, Heirene C, Willock DJ, Johnston P, Herzing AA, Kiely CJ, Hutchings GJ (2007) Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism. J Catal 250:231–239

    Article  CAS  Google Scholar 

  28. Wang S, Shen B, Song Q (2010) Kinetics of acetylene hydrochlorination over bimetallic Au–Cu/C catalyst. Catal Lett 134:102–109

  29. Gao M, Lyalin A, Taketsugu T (2011) Role of the support effects on the catalytic activity of gold clusters: a density functional theory study. Catalysts 1:18–39

    Article  CAS  Google Scholar 

  30. Spivey K, Williams JI, Wang L (2006) Structures of undecagold clusters: ligand effect. Chem Phys Lett 432:163–166

    Article  CAS  Google Scholar 

  31. Priyanka BS, Dharamvir K (2013) Structure of small gold clusters with Si doping using DFT (Au n Si, n = 1–10, 19). J Nanopart Res 24:203–212

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li H, Izmaylov A, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  34. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829

  35. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  36. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  37. Duijneveldt FBV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885

    Article  Google Scholar 

  38. Gautam S, Goel N, Dharamvir K (2014) A DFT based prediction of gold fullerene Au92Si12 with the aid of silicon. RSC Adv 4:13927–13933

    Article  CAS  Google Scholar 

  39. Pal R, Wang LM, Huang W, Wang LS, Zeng XC (2009) Structural evolution of doped gold clusters: MAu x (M = Si, Ge, Sn; x = 5−8). J Am Chem Soc 131:3396–3404

Download references

Acknowledgements

We gratefully acknowledge the funding provided by the Science and Technology Fund Projects of Shihezi University (no. 2014ZRKXJQ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Kang.

Electronic supplementary material

ESM 1

(DOCX 3820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhao, F. & Kang, L. Catalysis of the acetylene hydrochlorination reaction by Si-doped Au clusters: a DFT study. J Mol Model 24, 61 (2018). https://doi.org/10.1007/s00894-018-3602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3602-2

Keywords

Navigation