Skip to main content
Log in

Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987)

    Article  Google Scholar 

  2. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998)

    Article  ADS  Google Scholar 

  3. M. Haruta, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989)

    Article  Google Scholar 

  4. A. Knell, P. Barnickel, A. Baiker, A. Wokaun, J. Catal. 137, 306 (1992)

    Article  Google Scholar 

  5. M. Okumura, T. Akita, M. Haruta, X. Wang, O. Kajikawa, O. Okada, Appl. Catal. B 41, 43 (2003)

    Article  Google Scholar 

  6. A. Gómez-Cortés, G. Díaz, R. Zanella, H. Ramírez, P. Santiago, J.M. Saniger, J. Phys. Chem. C 113, 9710 (2009)

    Article  Google Scholar 

  7. X. Bokhimi, R. Zanella, C. Angeles-Chávez, J. Phys. Chem. C 114, 14101 (2010)

    Article  Google Scholar 

  8. X. Liu, A. Wang, T. Zhang, D.S. Su, C.Y. Mou, Catal. Today 160, 103 (2011)

    Article  Google Scholar 

  9. L. Li, C. Wang, X. Ma, Z. Yang, X. Lu, Chin. J. Catal. 33, 1778 (2012)

    Article  Google Scholar 

  10. A. Sandoval, C. Louis, R. Zanella, Appl. Catal. B 140–141, 363 (2013)

    Article  Google Scholar 

  11. A. Sandoval, A. Aguilar, C. Louis, A. Traverse, R. Zanella, J. Catal. 281, 40 (2011)

    Article  Google Scholar 

  12. X. Bokhimi, R. Zanella, V. Maturano, A. Morales, Mater. Chem. Phys. 138, 490 (2013)

    Article  Google Scholar 

  13. A.Q. Wang, J.H. Liu, S.D. Lin, T.S. Lin, C.Y. Mou, J. Catal.283, 186 (2005)

    Article  Google Scholar 

  14. S.M. Lang, T.M. Bernhardt, Phys. Chem. Chem. Phys. 14, 9255 (2012)

    Article  Google Scholar 

  15. B. Yoon, H. Hakkinen, U. Landman, J. Phys. Chem. A 107, 4066 (2003)

    Article  Google Scholar 

  16. H. Qian, D.E. Jiang, G. Li, C. Gayathri, A. Das, R.R. Gil, R. Jin, J. Am. Chem. Soc. 134, 16159 (2012)

    Article  Google Scholar 

  17. J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002)

    Article  ADS  Google Scholar 

  18. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  19. J. Sun, X. Xie, B. Cao, H. Duan, Comput. Theor. Chem. 1107, 127 (2017)

    Article  Google Scholar 

  20. K. Michaelian, Chem. Phys. Lett. 293, 202 (1998)

    Article  ADS  Google Scholar 

  21. K. Michaelian, N. Rendón, I.L. Garzón, Phys. Rev. B 60, 2000 (1999)

    Article  ADS  Google Scholar 

  22. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  23. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  24. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  25. M.P. Johansson, A. Lechtken, D. Schooss, M.M. Kappes, F. Furche, Phys. Rev. A 77, 053202 (2008)

    Article  ADS  Google Scholar 

  26. M.D. Morse, Chem. Rev. 86, 1049 (1986)

    Article  Google Scholar 

  27. G. Henkelman, G. Jóhannesson, H. Jónsson, in Theoretical methods in condensed phase chemistry, edited by S.D. Schwartz (Springer, Dordrecht, 2002), pp. 269–302

  28. G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

    Article  ADS  Google Scholar 

  29. H. Sekhar De, S. Krishnamurty, S. Pal, J. Phys. Chem. C 114, 6690 (2010)

    Article  Google Scholar 

  30. G. Zanti, D. Peeters, Theor. Chem. Acc. 132, 1300 (2012)

    Article  Google Scholar 

  31. M. Gruber, G. Heimel, L. Romaner, J.L. Brédas, E. Zojer, Phys. Rev. B 77, 165411 (2008)

    Article  ADS  Google Scholar 

  32. M. Amft, B. Johansson, N.V. Skorodumova, J. Chem. Phys. 136, 024312 (2012)

    Article  ADS  Google Scholar 

  33. J.P.K. Doye, D.J. Wales, New J. Chem. 22, 733 (1998)

    Article  Google Scholar 

  34. C.M. Chang, M.Y. Chou, Phys. Rev. Lett. 93, 133401 (2004)

    Article  ADS  Google Scholar 

  35. R.C. Longo, L.J. Gallego, Phys. Rev. B 74, 193409 (2006)

    Article  ADS  Google Scholar 

  36. J.M. Soler, E. Artacho, J.D.G. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Díaz, L.M., Pérez, L.A. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir. Eur. Phys. J. D 72, 51 (2018). https://doi.org/10.1140/epjd/e2018-80508-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80508-2

Keywords

Navigation