Skip to main content
Log in

A DFT study of a set of natural dyes for organic electronics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We systematically investigate, at density functional theory level, the electronic properties of a set of ten carotenoid molecules with different conjugation length. Ground state geometries were fully optimized using both B3LYP and its long-range corrected version, i.e., the CAM-B3LYP functional. The time-dependent DFT approach (TD-DFT) was also performed for the calculation of the excited states of the optimized geometries and the results were compared to the experimental ones, when available. Our findings indicate a dependence of the transition vertical energies, oscillator strengths, and transition dipole moments on the extension of conjugation, as expected. We also investigate the impact of the intra-molecular vibrations on the absorption spectrum by means of the Franck–Condon (FC) and nuclear ensemble (NE) approach to spectra simulation. Our simulations suggest that the Franck–Condon approximation may not be suitable to appropriately characterize the vibronic progression of these molecules, whereas the NE approach provides a contribution that vary from negligible to meaningful depending on which molecule and energy region is under analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fu Y-T, da Silva Filho DA, Sini G, Asiri AM, Aziz SG, Risko C, Brédas J-L (2014) Adv Funct Mater 24:3790–3798

    Article  CAS  Google Scholar 

  2. Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324–1338

    Article  Google Scholar 

  3. Wang X-F, Wang L, Wang Z, Wang Y, Tamai N, Hong Z, Kido J (2013) J Phys Chem C 117:804–811

    Article  CAS  Google Scholar 

  4. da Silva Prado A, Leal LA, de Brito PP, de Almeida Fonseca AL, Blawid S, Ceschin AM, Mourão RHV, da Silva Júnior AQ, da Silva Filho DA, Junior LAR, da Cunha WF (2017) J Mol Model 23:196/1–9

    Article  Google Scholar 

  5. Tange R, Inai K, Sagawa T, Yoshikawa S (2011) J Mater Res 26:306–310

    Article  CAS  Google Scholar 

  6. Britton G, Liaaen-Jensen S, Pfander H (2004) carotenoids: Handbook

  7. Ribeiro LA, da Cunha WF, Neto PHO, Gargano R, Silva GM (2013) New J Chem 37:2829–2836

    Article  CAS  Google Scholar 

  8. Kjelstrup-Hansen J, Norton JE, da Silva Filho DA, Brédas J-L, Rubahn H-G (2009) Org Electr 10:1228–1234

    Article  CAS  Google Scholar 

  9. Balakina MYu, Li J, Geskin VM, Marder SR, Brédas JL (2000) J Chem Phys 113:9598–9609

    Article  CAS  Google Scholar 

  10. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  11. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  12. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  14. Crespo-Otero R, Barbatti M (2012) Theor Chem Acc 131:1237

    Article  Google Scholar 

  15. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  16. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  17. Martins JBL, Durães JA, Sales MJA, Vilela AFA, Silva GM, Gargano R (2009) Int J Quantum Chem 109:739–745

    Article  CAS  Google Scholar 

  18. Kjelstrup-Hansen J, Norton JE, da Silva Filho DA, Brédas JL, Rubahn HG (2009) Org Electron 10:1228–1234

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision d.01. Gaussian Inc , Wallingford

    Google Scholar 

  20. Barbatti M, Ruckenbauer M, Plasser F, Pittner J, Granucci G, Persico M, Lischka H (2014) WIREs Comput Mol Sci 4:26–33

    Article  CAS  Google Scholar 

  21. Lima IT, Prado A, da S, Martins JBL, de Oliveira Neto PH, Ceschin AM, da Cunha WF, da Silva Filho DA (2016) J Phys Chem A 120:4944–4950

    Article  CAS  Google Scholar 

  22. Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in foods. International Life Sciences Institute Press, Washington

    Google Scholar 

  23. Rodriguez-Amaya DB, Kimura M (2004) Harvestplus handbook for carotenoid analysis. International Food Policy Research Institute, Washington

    Google Scholar 

  24. Craft NE, Soares Jr JH (1992) J Agric Food Chem 40:431–434

    Article  CAS  Google Scholar 

  25. Macpherson AN, Gillbro T (1998) J Phys Chem A 102:5049–5058

    Article  CAS  Google Scholar 

  26. Billsten HH, Zigmantas D, Sundstrom V, Polivka T (2002) Chem Phys Lett 355:465–470

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Brazilian Research Councils CNPq, CAPES, FAP-DF, and FINATEC and CENAPAD-SP for providing the computational facilities. D.A.S.F. gratefully acknowledges the financial support from the Brazilian Research Council CNPq, grants 407682/2013-9 and 304020/2016-8, and FAP-DF grants 193.001.284/2016 and 0193.001.062/2015. L.A.R.J gratefully acknowledges the financial support from the Brazilian Research Council FAP-DF grant 0193.000942/2015. The authors R.T.S.J. and L.A.R.J. wish to thank the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igo T. Lima.

Additional information

This paper belongs to Topical Collection VI Symposium on Electronic Structure and Molecular Dynamics – VI SeedMol

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.14 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, I.T., Sousa, L., Freitas, R.d.S. et al. A DFT study of a set of natural dyes for organic electronics. J Mol Model 23, 343 (2017). https://doi.org/10.1007/s00894-017-3512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3512-8

Keywords

Navigation