Skip to main content

Advertisement

Log in

A density functional theory study of hydrogen adsorption on Be-, Mg-, and Ca-exchanged LTL zeolite clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydrogen molecule adsorption on frameworks consisting of alkaline earth metal atoms (Be, Mg, or Ca) in LTL zeolite was investigated via density functional theory. A 24T zeolite cluster model was used in this study. HOMO and LUMO energy, chemical potential, chemical hardness, electronegativity, adsorption energy, and adsorption enthalpy values were calculated. The Mg-LTL and Ca-LTL clusters were found to have much lower chemical potentials and adsorption energies than those of the Be-LTL cluster. Additionally, the calculations indicated that the Mg-LTL and Ca-LTL clusters are softer (considering their lower chemical hardness values) and more chemically reactive than the Be-LTL cluster. The calculated hydrogen adsorption enthalpies were −14.7 and −9.4 kJ/mol for the Mg-LTL and Ca-LTL clusters, respectively, which are significantly larger than the enthalpy of liquefaction for the hydrogen molecule. These results imply that the Mg-LTL and Ca-LTL zeolite structures are promising cryoadsorbents for hydrogen storage.

Hydrogen adsorption was theoretically investigated on Be-, Ca- and Mg-LTL clusters. Ca- and Mg-LTL zeolites are potential cryoadsorbent materials for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–c

Similar content being viewed by others

References

  1. Strub AA, Imarisio G, Reidel D (1980) Hydrogen as an energy vector. Dordrecht

  2. Du X, Huang Y, Zhang Q, Li J, Wu E (2012) Acta Pet Sin (Pet Process Sect) 28:137–140

  3. Song MK, No KT (2007) Catal Today 120:374–382

    Article  CAS  Google Scholar 

  4. Turnes Palomino G, Otero Areán C, Llop Carayol MR (2010) Appl Surf Sci 256:5281–5284

  5. Langmi HW, Book D, Walton A, Johnson SR, Al-Mamouri MM, Speight JD, et al (2005) J Alloys Compd 404-406:637–642

  6. Areán CO, Palomino GT, Carayol MRL, Pulido A, Rubeš M, Bludský O, et al (2009) Chem Phys Lett 477:139–143

  7. Du XM, Huang Y, Wu ED (2011) Appl Mech Mater 55–57:1518–1522

  8. Stephanie-Victoire F, Goulay AM, Cohen de Lara E (1998) Langmuir 14:7255–7259

    Article  CAS  Google Scholar 

  9. Torres FJ, Civalleri B, Terentyev A, Ugliengo P, Pisani C (2007) J Phys Chem C 111:1871–1873

  10. Turnes Palomino G, Llop Carayol MR, Otero Areán C (2008) Catal Today 138:249–252

  11. Jhung SH, Sun Lee J, Woong Yoon J, Pyo Kim D, Chang JS (2007) Int J Hydrog Energy 32:4233–4237

  12. Turnes Palomino G, Llop Carayol MR, Otero Areán C (2006) J Mater Chem 16:2884–2885

  13. Otero Areán C, Turnes Palomino G, Llop Carayol MR (2007) Appl Surf Sci 253:5701–5704

  14. Fellah MF (2017) Appl Surf Sci 394:9–15

  15. Palomino GT, Bonelli B, Areán CO, Parra JB, Carayol MRL, Armandi M, et al (2009) Int J Hydrog Energy 34:4371–4378

  16. Areán CO, Manoilova OV, Bonelli B, Rodríguez Delgado M, Turnes Palomino G, Garrone E (2003) Chem Phys Lett 370:631–635

  17. Areán CO, Palomino GT, Garrone E, Nachtigallová D, Nachtigall P (2006) J Phys Chem B 110:395–402

  18. Torres FJ, Vitillo JG, Civalleri B, Ricchiardi G, Zecchina A (2007) J Phys Chem C 111:2505–2513

  19. Fellah MF (2014) J Porous Mater 21:883–888

  20. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

  21. Frisch MF et al (2009) Gaussian 09. Gaussian Inc., Wallingford

  22. Becke AD (1988) Phys Rev A 38:3098–3100

  23. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789

  24. Kachurovskaya NA, Zhidomirov GM, Hensen EJM, Van Santen RA (2003) Catal Lett 86:25–31

  25. Kachurovskaya NA, Zhidomirov GM, van Santen RA (2004) J Phys Chem B 108:5944–5950

  26. Fellah MF (2011) J Phys Chem C 115:1940–1951

  27. Rozanska X, Saintigny X, Van Santen RA, Hutschka F (2011) J Catal 202:141–155

  28. Rozanska X, van Santen RA, Hutschka F, Hafner J (2011) J Am Chem Soc 123:7655–7667

  29. Vos AM, Rozanska X, Schoonheydt RA, van Santen RA, Hutschka F, Hafner J (2001) J Am Chem Soc 123:2799–2809

  30. Insuwan W, Rangsriwatananon K, Meeprasert J, Namuangruk S, Surakhot Y, Kungwan N, Jungsuttiwong S (2014) Micropor Mesopor Mat 197:348–357

  31. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh, pp 68–69

  32. Wong MW (1996) Chem Phys Lett 256:391–399

  33. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

  34. Kumar V, Shah EV, Roy DR (2015) Phys E 68:224–231

  35. Pearson RG (2005) J Chem Sci 117:369–377

  36. Pearson RG (1992) J Mol Struc (THEOCHEM) 255:261–270

  37. Grimme S, Hujo W, Kirchner B (2010) Phys Chem Chem Phys 214:4875–4883

  38. Andersson MP (2013) J Theor Chem 327839

  39. Pearson RG (1998) Inorg Chem 27:734–740

  40. Allred L (1961) J Inorg Nucl Chem 17:215–221

  41. Kulkarni BS, Krishnamurty S, Pal S (2010) J Mol Catal A 329:36–43

  42. Modi CK, Trivedi PM, Chudasama JA, Nakum HD, Parmar DK, Gupta SK, Jha PK (2014) Green Chem Lett Rev 7:278–287

  43. Fellah MF (2016) Fuel Process Technol 144:191–196

  44. Fallahpour F, Gorgani SS, Nouraliei M (2016) Indian J Phys 90(8):931–936

  45. Samanta PN, Das KK (2016) Int J Quantum Chem 116:1467–1476

  46. Ghamsari PA, Nouraliei M, Gorgani SS (2016) J Mol Graph Model 70:163–169

  47. Perry RH, Green DW (1997) Section 2. In: Perry’s chemical engineers handbook, 7th edn. McGraw-Hill, Sydney

Download references

Acknowledgements

This work was supported by a research fund from Bursa Technical University (project number 2015-01-005). The numerical calculations reported in this paper were partially performed at TUBITAK-ULAKBIM, a high-performance and grid computing center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Ferdi Fellah.

Electronic supplementary material

ESM 1

(DOCX 3.27 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fellah, M.F. A density functional theory study of hydrogen adsorption on Be-, Mg-, and Ca-exchanged LTL zeolite clusters. J Mol Model 23, 184 (2017). https://doi.org/10.1007/s00894-017-3349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3349-1

Keywords

Navigation