Skip to main content
Log in

Accurate prediction of emission energies with TD-DFT methods for platinum and iridium OLED materials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Accurate prediction of triplet excitation energies for transition metal complexes has proven to be a difficult task when confronted with a variety of metal centers and ligand types. Specifically, phosphorescent transition metal light emitters, typically based on iridium or platinum, often give calculated results of varying accuracy when compared to experimentally determined T1 emission values. Developing a computational protocol for reliably calculating OLED emission energies will allow for the prediction of a complex’s color prior to synthesis, saving time and resources in the laboratory. A comprehensive investigation into the dependence of the DFT functional, basis set, and solvent model is presented here, with the aim of identifying an accurate method while remaining computationally cost-effective. A protocol that uses TD-DFT excitation energies on ground-state geometries was used to predict triplet emission values of 34 experimentally characterized complexes, using a combination of gas phase B3LYP/LANL2dz for optimization and B3LYP/CEP-31G/PCM(THF) for excitation energies. Results show excellent correlation with experimental emission values of iridium and platinum complexes for a wide range of emission energies. The set of complexes tested includes neutral and charged complexes, as well as a variety of different ligand types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J Appl Phys 90(10):5048–5051. doi:10.1063/1.1409582

    Article  CAS  Google Scholar 

  2. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission fromorganic electroluminescent devices. Nature 395:151. doi:10.1038/25954

    Article  CAS  Google Scholar 

  3. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4. doi: 10.1063/1.124258

  4. Yasukawa N, Ikemizu D, Oshiyama T, Nishizeki M, Tanaka T (2012) Organic Electroluminescent Device, Display Apparatus, and Lighting Apparatus. United States Patent US20120018714A1

  5. Kimyonok A, Domercq B, Haldi A, Cho J-Y, Carlise JR, Wang X-Y, Hayden LE, Jones SC, Barlow S, Marder SR, Kippelen B, Weck M (2007) Norbornene-based copolymers with iridium complexes and Bis(carbazolyl) fluorene groups in their side-chains and their use in light-emitting diodes. Chem Mater 19:5602–5608. doi:10.1021/cm0717357

    Article  CAS  Google Scholar 

  6. Rausch AF, Murphy L, Williams JAG, Yersin H (2012) Improving the performance of Pt(II) complexes for blue light emission by enhancing the molecular rigidity. Inorg Chem 51:312–319. doi:10.1021/ic201664v

    Article  CAS  Google Scholar 

  7. Solomatina AI, Krupenya DV, Gurzhiy VV, Zlatkin I, Pushkarev AP, Bochkarev MN, Besley NA, Bichoutskaia E, Tunik SP (2015) Cyclometallated platinum(II) complexes containing NHC ligands: synthesis, characterization, photophysics and their application as emitters in OLEDs. Dalton Trans 44(16):7152–7162. doi:10.1039/c4dt03106g

    Article  CAS  Google Scholar 

  8. Shang X, Han D, Zhan Q, Zhang G, Li D (2014) DFT and TD-DFT study on the electronic structures and phosphorescent properties of a series of Heteroleptic iridium(III) complexes. Organometallics 33:3300–3308. doi:10.1021/om401194z

    Article  CAS  Google Scholar 

  9. Xu S, Wang J, Xia H, Zhao F, Wang Y (2015) Computational prediction for emission energy of iridium (III) complexes based on TDDFT calculations using exchange-correlation functionals containing various HF exchange percentages. J Mol Model 21:22. doi:10.1007/s00894-014-2557-1

  10. Tomasi J (2004) Thirty years of continuum solvation Chemistry: a review and prospects for the near future. Theor Chem Accounts 112(4):184–203. doi:10.1007/s00214-004-0582-3

    Article  CAS  Google Scholar 

  11. Kolosov D, Adamovich V, Djurovich P, Thompson ME, Adachi C (2002) 1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, Exciplex, and host emission. J Am Chem Soc 124:9945–9954. doi:10.1021/ja0263588

    Article  CAS  Google Scholar 

  12. Ye S, Liu Y, C-a D, Xi H, Wu W, Wen Y, Lu K, Du C, Liu Y, Yu G (2009) Wide-energy-gap host materials for blue phosphorescent organic light-emitting diodes. Chem Mater 21:1333–1342. doi:10.1021/cm8032302

    Article  CAS  Google Scholar 

  13. Niehaus TA, Hofbeck T, Yersin H (2015) Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Adv 5:63318–63329. doi:10.1039/c5ra12962a

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino GZ J, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) GAUSSIAN 09 (revision D.01). Gaussian Inc., Wallingford

    Google Scholar 

  15. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871. doi:10.1103/PhysRev.136.B864

    Article  Google Scholar 

  16. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73. doi:10.1007/BF01351576

  17. Caillie CV, Amos RD (2000) Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chem Phys Lett 317(1–2):159–164. doi:10.1016/S0009-2614(99)01346-9

    Article  Google Scholar 

  18. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224. doi:10.1063/1.477483

  19. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:094107. doi:10.1063/1.2173258

    Article  Google Scholar 

  20. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord Chem Rev 255:2622–2652. doi:10.1016/j.ccr.2011.01.042

  21. Yersin H (2008) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim. doi:10.1002/9783527621309

    Google Scholar 

  22. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98(2):1372–1377. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  23. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  25. Jacquemin D, Perpete EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comp 6(7):2071–2085. doi:10.1021/ct100119e

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167. doi:10.1021/ar700111a

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

    Article  Google Scholar 

  28. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  29. Beck AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  Google Scholar 

  30. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824. doi:10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  31. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  32. Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2:2810–2817. doi:10.1021/jz201170d

    Article  CAS  Google Scholar 

  33. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. doi:10.1039/b810189b

    Article  CAS  Google Scholar 

  34. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81(12):6026–6033. doi:10.1063/1.447604

    Article  Google Scholar 

  35. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to au including the outermost core orbitals. J Phys Chem 82(1):299–310. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Phys Chem 82(1):270–283. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Phys Chem 82(1):284–298. doi:10.1063/1.448800

    Article  Google Scholar 

  38. Jr THD, Hay PJ (1977) Modern theoretical chemistry, vol 3. Plenum, New York

    Google Scholar 

  39. Francl MM, Pietro WJ, Here WJ, Binkley JS, Gordon MS (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665. doi:10.1063/1.444267

    Article  CAS  Google Scholar 

  40. Herre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261. doi:10.1063/1.1677527

    Article  Google Scholar 

  41. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654. doi:10.1063/1.438955

    Article  CAS  Google Scholar 

  42. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72(10):5639–5648. doi:10.1063/1.438980

    Article  CAS  Google Scholar 

  43. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. Chem Phys 107(8):3032–3041. doi:10.1063/1.474659

    CAS  Google Scholar 

  44. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM) 464(1–3):211–226. doi:10.1016/S0166-1280(98)00553-3

    Article  CAS  Google Scholar 

  45. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. doi:10.1021/jp810292n

    Article  CAS  Google Scholar 

  46. Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, III WAG, Thompson ME (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131(28):9813–9822. doi:10.1021/ja903317w

    Article  CAS  Google Scholar 

  47. Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl Phys Lett 79(13):2082–2084. doi:10.1063/1.1400076

    Article  CAS  Google Scholar 

  48. Chiu Y-C, Chi Y, Hung J-Y, Cheng Y-M, Yu Y-C, Chung M-W, Lee G-H, Chou P-T, Chen C-C, Wu C-C, Hsieh H-Y (2009) Blue to true-blue phosphorescent IrIII complexes bearing a Nonconjugated ancillary phosphine chelate: strategic synthesis, photophysics, and device integration. ASC Appl Mater Interfaces 1(2):433–442. doi:10.1021/am800122n

    Article  CAS  Google Scholar 

  49. Lee SJ, Park K-M, Yang K, Kang Y (2009) Blue phosphorescent Ir(III) complex with high color purity: fac-Tris(2′,6′-difluoro-2,3′-bipyridinato-N,C4’) iridium(III). Inorg Chem 48(3):1030–1037. doi:10.1021/ic801643p

    Article  CAS  Google Scholar 

  50. Tordera D, Serrano-Pérez JJ, Pertegás A, Ortí E, Bolink HJ, Baranoff E, Nazeeruddin MK, Frey J (2013) Correlating the lifetime and fluorine content of iridium(III) emitters in green light-emitting electrochemical cells. Chem Mater 25:3391–3397. doi:10.1021/cm402473j

    Article  CAS  Google Scholar 

  51. Li H, Yin Y-M, Cao H-T, Sun H-Z, Wang L, Shan G-G, Zhu D-X, Su Z-M, Xie W-F (2014) Efficient greenish-blue phosphorescent iridium(III) complexes containing carbene and triazole chromophores for organic light-emitting diodes. J Organometallic Chem 753:55–62. doi:10.1016/j.jorganchem.2013.11.036

    Article  CAS  Google Scholar 

  52. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Synthesis and characterization of phosphorescent Cyclometalated platinum complexes. Inorg Chem 41(12):3055–3066

    Article  CAS  Google Scholar 

  53. Ravindranathan D, Vezzu DAK, Bartolotti L, Boyle PD, Huo S (2010) Improvement in phosphorescence efficiency through tuning of coordination geometry of tridentate Cyclometalated platinum(II) complexes. Inorg Chem 49(19):8922–8928. doi:10.1021/ic101109h

    Article  CAS  Google Scholar 

  54. Vezzu DAK, Ravindranathan D, Garner AW, Bartolotti L, Smith ME, Boyle PD, Huo S (2011) Highly luminescent tridentate N∧C*N platinum(II) complexes featured in fused five-six-membered metallacycle and diminishing concentration quenching. Inorg Chem 50:8261–8273. doi:10.1021/ic200794b

    Article  CAS  Google Scholar 

  55. Fleetham T, Li G, Wen L, Li J (2014) Effi cient “pure” blue OLEDs employing Tetradentate Pt complexes with a narrow spectral bandwidth. Adv Mater 26:7116–7121. doi:10.1002/adma.201401759

    Article  CAS  Google Scholar 

  56. Hudson ZM, Sun C, Helander MG, Amarne H, Lu Z-H, Wang S (2010) Enhancing phosphorescence and electrophosphorescence efficiency of cyclometalated Pt(II) compounds with triarylboron. Adv Funct Mater 20:3426–3439. doi:10.1002/adfm.201000904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Norway (Grant No. 231706/F20 and No. 179568/V30), and from the Norwegian supercomputing program NOTUR (Grant No. NN4654K and NN93330K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn R. Morello.

Electronic supplementary material

Electronic Supplementary Material (ESM) available: Experimentally derived emission maxima and B3LYP/LANL2dz/gas optimized Cartesian coordinates for all complexes.

ESM 1

(DOCX 186 kb).

ESM 2

(XYZ 99 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morello, G.R. Accurate prediction of emission energies with TD-DFT methods for platinum and iridium OLED materials. J Mol Model 23, 174 (2017). https://doi.org/10.1007/s00894-017-3348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3348-2

Keywords

Navigation