Skip to main content
Log in

Iterative stochastic subspace self-consistent field method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We propose a new self-consistent field (SCF) algorithm based on an iterative, partially stochastic “Divide & Conquer”-type approach. This new SCF algorithm is a simple variant of the usual SCF procedure and can be easily implemented in parallel. A detailed description of the algorithm is reported. We illustrate this new method on one-dimensional hydrogen chains and three-dimensional hydrogen clusters.

Stochastic partition of the molecular orbitals

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In all the cases studied in the work, we have observed a smooth convergence of the SCF energy. Therefore, the curves reported in Figs. 6 and 7 can be easily extrapolated to the desired convergence threshold.

References

  1. Moore GE (1965) Electron Mag 38

  2. Nielsen IM, Janssen CL (2008) Sci Prog 16:277

    Google Scholar 

  3. de Jong WA, Bylaska E, Govind N, Janssen CL, Kowalski K, Muller T, Nielsen IMB, van Dam HJJ, Veryazov V, Lindh R (2010) Phys Chem Chem Phys 12:6896

    Article  Google Scholar 

  4. Yasuda K (2008) J Comput Chem 29:334

    Article  CAS  Google Scholar 

  5. Yasuda K (2008) J Chem Theory Comput 4:1230

    Article  CAS  Google Scholar 

  6. Ufimtsev IS, Martinez TJ (2008) Comput Sci Eng 10:26

  7. Ufimtsev IS, Martinez TJ (2009) J Chem Theory Comput 5:1004

    Article  CAS  Google Scholar 

  8. Ufimtsev IS, Martinez TJ (2009) J Chem Theory Comput 5:2619

    Article  CAS  Google Scholar 

  9. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York

    Google Scholar 

  10. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Clarendon Press, Oxford

    Google Scholar 

  11. Gill PMW, Johnson BG, Pople JA (1994) Chem Phys Lett 217 :65

    Article  CAS  Google Scholar 

  12. Gill PMW (1994) Adv Quantum Chem 25:141

    Article  CAS  Google Scholar 

  13. Dyczmons V (1973) Theor Chim Acta 28:307

    Article  CAS  Google Scholar 

  14. Kussmann J, Beer M, Ochsenfeld C (2013) WIRES Comput Mol Sci 3:614

    Article  CAS  Google Scholar 

  15. Barca GMJ, Loos PF, Gill PMW (2016) J Chem Theory Comput 12:1735

    Article  CAS  Google Scholar 

  16. Haser M, Ahlrichs R (1989) J Comput Chem 10:104

    Article  Google Scholar 

  17. Maurer SA, Lambrecht DS, Flaig D, Ochsenfeld C (2012) J Chem Phys 136:144107

    Article  Google Scholar 

  18. Challacombe M, Schwegler E (1997) J Chem Phys 106:5526

    Article  CAS  Google Scholar 

  19. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994) Chem Phys Lett 230:8

    Article  CAS  Google Scholar 

  20. White CA, Head-Gordon M (1994) J Chem Phys 101:6593

    Article  Google Scholar 

  21. Schwegler E, Challacombe M (1996) J Chem Phys 105:2726

    Article  CAS  Google Scholar 

  22. Goedecker S (1999) Rev Mod Phys 71:1085

    Article  CAS  Google Scholar 

  23. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  24. Yang W, Lee T-S (1995) J Chem Phys 103:5674

    Article  CAS  Google Scholar 

  25. Assfeld X, Rivail JL (1996) Chem Phys Lett 263:100

    Article  CAS  Google Scholar 

  26. Fornili A, Loos P-F, Assfeld X, Sironi M (2006) Chem Phys Lett 427:236

    Article  CAS  Google Scholar 

  27. Loos PF, Assfeld X (2007) J Chem Theory Comput 3:1047

    Article  CAS  Google Scholar 

  28. Monari A, Rivail J-L, Assfeld X (2013) Acc Chem Res 46:596

    Article  CAS  Google Scholar 

  29. Moreau Y, Loos PF, Assfeld X (2004) Theor Chem Acc 112 :228

    Article  CAS  Google Scholar 

  30. Ferre N, Assfeld X, Rivail J-L (2002) J Comput Chem 23:610

    Article  CAS  Google Scholar 

  31. Loos P-F, Preat J, Laurent A, Michaux C, Jacquemin D, Perpete E, Assfeld X (2008) J Chem Theory Comput 4:637

    Article  CAS  Google Scholar 

  32. Loos PF, Dumont E, Laurent AD, Assfeld X (2009) Chem Phys Lett 475:120

    Article  CAS  Google Scholar 

  33. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  34. Golub GH, van Loan CF (2013) Matrix computations, 4th edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  35. Tsuchimochi T, Scuseria GE (2009) J Chem Phys 131:121102

    Article  Google Scholar 

  36. Sinitskiy AV, Greenman L, Mazziotti DA (2010) J Chem Phys 133:014104

    Article  Google Scholar 

  37. Sancho-Garcia JC (2011) Chem Phys Lett 511:172

    Article  CAS  Google Scholar 

  38. Stella L, Attaccalite C, Sorella S, Rubio A (2011) Phys Rev B 84:245117

    Article  Google Scholar 

  39. Wolfram Research, Inc. (2013) Mathematica 9

  40. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Article  CAS  Google Scholar 

  41. Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) J Chem Phys 52:2769

    Article  CAS  Google Scholar 

  42. Pulay P (1980) Chem Phys Lett 73:393

    Article  CAS  Google Scholar 

  43. Pulay P (1982) J Comput Chem 3:556

    Article  CAS  Google Scholar 

  44. Guo Y, Li W, Li S (2011) J Chem Phys 135:134107

    Article  Google Scholar 

  45. Challacombe M (1999) J Chem Phys 110:2332

    Article  CAS  Google Scholar 

  46. Tewarson RP (1973) Sparse matrices. Academic Press Inc., New York

    Google Scholar 

Download references

Acknowledgments

PFL thanks the NCI National Facility for a generous grant of supercomputer time, and the Australian Research Council for funding (Grant DP140104071) and a Discovery Early Career Researcher Award (Grant DE130101441). XA would like to thank the Research School of Chemistry of the Australian National University for a visiting fellowship during the construction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-François Loos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TXT 6.03 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loos, PF., Rivail, JL. & Assfeld, X. Iterative stochastic subspace self-consistent field method. J Mol Model 23, 173 (2017). https://doi.org/10.1007/s00894-017-3347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3347-3

Keywords

Navigation