Skip to main content
Log in

Conformational analysis of short polar side-chain amino-acids through umbrella sampling and DFT calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular and quantum mechanics calculations were carried out in a series of tripeptides (GXG, where X = D, N and C) as models of the unfolded states of proteins. The selected central amino acids, especially aspartic acid (D) and asparagine (N) are known to present significant average conformations in partially allowed areas of the Ramachandran plot, which have been suggested to be important in unfolded protein regions. In this report, we present the calculation of the propensity values through an umbrella sampling procedure in combination with the calculation of the NMR J-coupling constants obtained by a DFT model. The experimental NMR observations can be reasonably explained in terms of a conformational distribution where PPII and β basins sum up propensities above 0.9. The conformational analysis of the side chain dihedral angle (χ1), along with the computation of 3J(HαHβ), revealed a preference for the g and g + rotamers. These may be connected with the presence of intermolecular H-bonding and carbonyl–carbonyl interactions sampled in the PPII and β basins. Taking into account all those results, it can be established that these residues show a similar behavior to other amino acids in short peptides regarding backbone φ,ψ dihedral angle distribution, in agreement with some experimental analysis of capped dipeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a,b

Similar content being viewed by others

References

  1. Shi ZS, Chen K, Liu ZG, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106(5):1877–1897. doi:10.1021/cr040433a

    Article  CAS  Google Scholar 

  2. Beck DAC, Alonso DOV, Inoyama D, Daggett V (2008) The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins. Proc Natl Acad Sci USA 105(34):12259–12264. doi:10.1073/pnas.0706527105

    Article  CAS  Google Scholar 

  3. Grdadolnik J, Mohacek-Grosev V, Baldwin RL, Avbelj F (2011) Populations of the three major backbone conformations in 19 amino acid dipeptides. Proc Natl Acad Sci USA 108(5):1794–1798. doi:10.1073/pnas.1017317108

    Article  CAS  Google Scholar 

  4. Jensen MR, Zweckstetter M, Huang J-R, Backledge M (2014) Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev 114(13):6632–6660. doi:10.1021/cr400688u

    Article  CAS  Google Scholar 

  5. Rybka K, Toal SE, Verbaro DJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R (2013) Disorder and order in unfolded and disordered peptides and proteins: a view derived from tripeptide conformational analysis. II. Tripeptides with short side chains populating asx and beta-type like turn conformations. Prot Struct Funct Bioinf 81(6):968–983. doi:10.1002/prot.24226

    Article  CAS  Google Scholar 

  6. Schweitzer-Stenner R, Hagarman A, Toal S, Mathieu D, Schwalbe H (2013) Disorder and order in unfolded and disordered peptides and proteins: a view derived from tripeptide conformational analysis. I. Tripeptides with long and predominantly hydrophobic side chains. Proteins 81(6):955–967. doi:10.1002/prot.24225

    Article  CAS  Google Scholar 

  7. Ho BK, Thomas A, Brasseur R (2003) Revisiting the Ramachandran plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Protein Sci 12(11):2508–2522. doi:10.1110/ps.03235203

    Article  CAS  Google Scholar 

  8. Schweitzer-Stenner R (2012) Conformational propensities and residual structures in unfolded peptides and proteins. Mol BioSyst 8(1):122–133. doi:10.1039/c1mb05225j

    Article  CAS  Google Scholar 

  9. Adzhubei AA, Sternberg MJE, Makarov AA (2013) Polyproline-II Helix in proteins: structure and function. J Mol Biol 425(12):2100–2132. doi:10.1016/j.jmb.2013.03.018

    Article  CAS  Google Scholar 

  10. Toal S, Schweitzer-Stenner R (2014) Local order in the unfolded state: conformational biases and nearest neighbor interactions. Biomolecules 4(3):725–773. doi:10.3390/biom4030725

    Article  Google Scholar 

  11. Bhowmick P, Guharoy M, Tompa P (2015) Bioinformatics approaches for predicting disordered protein motifs. In: Felli IC, Pierattelli R (eds) Intrinsically disordered proteins studied by NMR spectroscopy, vol 870. Advances in experimental medicine and biology. Springer, Berlin, pp 291–318. doi:10.1007/978-3-319-20164-1_9

  12. Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148

    CAS  Google Scholar 

  13. Srinivasan N, Anuradha VS, Ramakrishnan C, Sowdhamini R, Balaram P (1994) Conformational characteristics of asparaginyl residues in proteins. Int J Pept Protein Res 44(2):112–122

    Article  CAS  Google Scholar 

  14. Pal D, Chakrabarti P (2002) On residues in the disallowed region of the Ramachandran map. Biopolymers 63(3):195–206. doi:10.1002/bip.10051

    Article  CAS  Google Scholar 

  15. Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371(2):283–301. doi:10.1016/j.jmb.2007.05.078

    Article  CAS  Google Scholar 

  16. Eker F, Griebenow K, Cao XL, Nafie LA, Schweitzer-Stenner R (2004) Preferred peptide backbone conformations in the unfolded state revealed by the structure analysis of alanine-based (AXA) tripeptides in aqueous solution. Proc Natl Acad Sci USA 101(27):10054–10059. doi:10.1073/pnas.0402623101

    Article  CAS  Google Scholar 

  17. Oh K-I, Lee K-K, Park E-K, Jung Y, Hwang G-S, Cho M (2012) A comprehensive library of blocked dipeptides reveals intrinsic backbone conformational propensities of unfolded proteins. Prot Struct Funct Bioinf 80(4):977–990. doi:10.1002/prot.24000

    Article  CAS  Google Scholar 

  18. Schweitzer-Stenner R (2006) Advances in vibrational spectroscopy as a sensitive probe of peptide and protein structure—a critical review. Vib Spectrosc 42(1):98–117. doi:10.1016/j.vibspec.2006.01.004

    Article  CAS  Google Scholar 

  19. Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30(1):11–15. doi:10.1063/1.1729860

    Article  CAS  Google Scholar 

  20. Deane CM, Allen FH, Taylor R, Blundell TL (1999) Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid. Protein Eng 12(12):1025–1028. doi:10.1093/protein/12.12.1025

    Article  CAS  Google Scholar 

  21. Bartlett GJ, Newberry RW, VanVeller B, Raines RT, Woolfson DN (2013) Interplay of hydrogen bonds and n ->pi* interactions in proteins. J Am Chem Soc 135(49):18682–18688. doi:10.1021/ja4106122

    Article  CAS  Google Scholar 

  22. Cruz VL, Ramos J, Martinez-Salazar J (2012) Assessment of the intrinsic conformational preferences of dipeptide amino acids in aqueous solution by combined umbrella sampling/MBAR statistics. A comparison with experimental results. J Phys Chem B 116(1):469–475. doi:10.1021/jp206757j

    Article  CAS  Google Scholar 

  23. Jorgensen WL, Tiradorives J (1988) The OPLS potential functions for proteins—energy minimizations for crystals of cyclic-peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  24. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487. doi:10.1021/jp003919d

    Article  CAS  Google Scholar 

  25. Ravindranathan KP, Gallicchio E, Levy RM (2005) Conformational equilibria and free energy profiles for the allosteric transition of the ribose-binding protein. J Mol Biol 353(1):196–210. doi:10.1016/j.jmb.2005.08.009

    Article  CAS  Google Scholar 

  26. Wang J, Gu Y, Liu H (2006) Determination of conformational free energies of peptides by multidimensional adaptive umbrella sampling. J Chem Phys 125(9):094907. doi:10.1063/1.2346681

    Article  Google Scholar 

  27. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105. doi:10.1063/1.2978177

    Article  Google Scholar 

  28. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102(19):6665–6670. doi:10.1073/pnas.0408037102

    Article  CAS  Google Scholar 

  30. Lawrence CP, Skinner JL (2003) Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett 372(5–6):842–847. doi:10.1016/s0009-2614(03)00526-8

    Article  CAS  Google Scholar 

  31. Kwac K, Lee KK, Han JB, Oh KI, Cho M (2008) Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra. J Chem Phys 128(10):105106. doi:10.1063/1.2837461

    Article  Google Scholar 

  32. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  33. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  34. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.LOG(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  35. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  36. Frisch GWT MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc, Wallingford

    Google Scholar 

  37. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  38. Salvador P, Tsai IH, Dannenberg JJ (2011) J-coupling constants for a trialanine peptide as a function of dihedral angles calculated by density functional theory over the full Ramachandran space. Phys Chem Chem Phys 13(39):17484–17493. doi:10.1039/c1cp20520j

    Article  CAS  Google Scholar 

  39. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093. doi:10.1021/cr9904009

    Article  CAS  Google Scholar 

  40. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104(14):5497–5509. doi:10.1063/1.471789

    Article  CAS  Google Scholar 

  41. Deng W, Cheeseman JR, Frisch MJ (2006) Calculation of nuclear spin-spin coupling constants of molecules with first and second row atoms in study of basis set dependence. J Chem Theory Comput 2(4):1028–1037. doi:10.1021/ct600110u

    Article  CAS  Google Scholar 

  42. Cruz V, Ramos J, Martinez-Salazar J (2011) Water-mediated conformations of the alanine dipeptide as revealed by distributed umbrella sampling simulations, quantum mechanics based calculations, and experimental data. J Phys Chem B 115(16):4880–4886. doi:10.1021/jp2022727

    Article  CAS  Google Scholar 

  43. Degtyarenko IM, Jalkanen KJ, Gurtovenko AA, Nieminen RM (2007) l-Alanine in a droplet of water: a density-functional molecular dynamics study. J Phys Chem B 111(16):4227–4234. doi:10.1021/jp0676991

    Article  CAS  Google Scholar 

  44. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Role of hydration in determining the structure and vibrational spectra of l-alanine and N-acetyl l-alanine N ′-methylamide in aqueous solution: a combined theoretical and experimental approach. Theor Chem Acc 119(1–3):191–210. doi:10.1007/s00214-007-0361-z

    Article  CAS  Google Scholar 

  45. Kubelka J, Huang R, Keiderling TA (2005) Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water. J Phys Chem B 109(16):8231–8243. doi:10.1021/jp0506078

    Article  CAS  Google Scholar 

  46. Law PB, Daggett V (2010) The relationship between water bridges and the polyproline II conformation: a large-scale analysis of molecular dynamics simulations and crystal structures. Protein Eng Des Sel 23(1):27–33. doi:10.1093/protein/gzp069

    Article  CAS  Google Scholar 

  47. Poon CD, Samulski ET, Weise CF, Weisshaar JC (2000) Do bridging water molecules dictate the structure of a model dipeptide in aqueous solution? J Am Chem Soc 122(23):5642–5643

    Article  CAS  Google Scholar 

  48. Mobli M, Almond A (2007) N-Acetylated amino sugars: the dependence of NMR (3)J((H)(H)(N)(2))-couplings on conformation, dynamics and solvent. Org Biomol Chem 5(14):2243–2251. doi:10.1039/b705761j

    Article  CAS  Google Scholar 

  49. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415. doi:10.1002/jcc.20065

    Article  CAS  Google Scholar 

  50. Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95(1):L07–L09. doi:10.1529/biophysj.108.132696

    Article  CAS  Google Scholar 

  51. Hagarman A, Measey TJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R (2010) Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I′ band profiles and NMR scalar coupling constants. J Am Chem Soc 132(2):540–551

    Article  CAS  Google Scholar 

  52. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. doi:10.1021/acs.jctc.5b00864

    Article  CAS  Google Scholar 

  53. Lanza G, Chiacchio MA (2014) Ab initio MP2 and density functional theory computational study of AcAlaNH(2) peptide hydration: a bottom-up approach. ChemPhysChem 15(13):2785–2793. doi:10.1002/cphc.201402222

    Article  CAS  Google Scholar 

  54. Chellgren BW, Miller A-F, Creamer TP (2006) Evidence for polyproline II helical structure in short polyglutamine tracts. J Mol Biol 361(2):362–371. doi:10.1016/j.jmb.2006.06.044

    Article  CAS  Google Scholar 

  55. Jono R, Watanabe Y, Shimizu K, Terada T (2010) Multicanonical Ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment. J Comput Chem 31(6):1168–1175. doi:10.1002/jcc.21401

    CAS  Google Scholar 

  56. Graf J, Nguyen PH, Stock G, Schwalbe H (2007) Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study. J Am Chem Soc 129(5):1179–1189. doi:10.1021/ja0660406

    Article  CAS  Google Scholar 

  57. Kozminski W, Zhukov I, Pecul M, Sadlej J (2005) A protein backbone psi and phi angle dependence of (2)J(N(i)), C alpha(i-1): the new NMR experiment and quantum chemical calculations. J Biomol NMR 31(2):87–95. doi:10.1007/s10858-004-7563-7

    Article  CAS  Google Scholar 

  58. Helgaker T, Jaszunski M, Ruud K, Gorska A (1998) Basis-set dependence of nuclear spin-spin coupling constants. Theor Chem Acc 99(3):175–182. doi:10.1007/s002140050321

    Article  CAS  Google Scholar 

  59. Peralta JE, Scuseria GE, Cheeseman JR, Frisch MJ (2003) Basis set dependence of NMR spin-spin couplings in density functional theory calculations: first row and hydrogen atoms. Chem Phys Lett 375(5–6):452–458. doi:10.1016/s0009-2614(03)00886-8

    Article  CAS  Google Scholar 

  60. Haehnke MJ, Richter C, Heinicke F, Schwalbe H (2010) The HN(COCA)HAHB NMR experiment for the stereospecific assignment of H-beta-protons in non-native states of proteins. J Am Chem Soc 132((3):918−+. doi:10.1021/ja909239w

    Article  Google Scholar 

  61. Allen FH, Baalham CA, Lommerse JPM, Raithby PR (1998) Carbonyl–carbonyl interactions can be competitive with hydrogen bonds. Acta Crystallogr Sect B Struct Sci 54:320–329. doi:10.1107/s0108768198001463

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to the CICYT (Ministerio de Economia y Competitividad) (Project MAT2012-36341) for financial support. This research was also funded by the CSIC (Consejo Superior de Investigaciones Científicas, Spain) under the Grant PIE-201360E097. J. R. acknowledges financial support through the Ramón y Cajal program (Contract RYC-2011-09585). The authors also thank the “Centro de Supercomputación de Galicia (CESGA)” and “Secretaria General Adjunta de Informatica (SGAI-CSIC)” for computational resources. We want to thank Prof. Schweitzer-Stenner, whose private comments some years ago motivated the present work. Computational support in the use of the distributed computing to the Ibercivis team is acknowledged (http://www.ibercivis.es). We are also very grateful to the anonymous citizens who have made available their desktop computers in an altruistic way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Cruz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Relative free energy map for GDG tripeptide using the Charmm27 force field. Energies are given in kT units and angles in degrees. (PDF 168 kb)

Online Resource 2

List of initial and final φ, ψ values corresponding to the fully optimized geometries for each tripeptide. The last column corresponds to the optimized electronic energies in atomic units. Figure showing the distribution of the optimized geometries in a Ramachandran plot (PDF 72 kb)

Online Resource 3

List of φ, ψ, χ 1 , and J-coupling constants calculated for the GDG case. Similar values were obtained for GNG. (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, J., Cruz, V.L. Conformational analysis of short polar side-chain amino-acids through umbrella sampling and DFT calculations. J Mol Model 22, 273 (2016). https://doi.org/10.1007/s00894-016-3139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3139-1

Keywords

Navigation