Skip to main content
Log in

Enhancing effect of metal coordination interaction on pnicogen bonding

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ternary complexes ML∙∙∙PyZX2∙∙∙NH3 (ML = CuCl, CuCN, AgCN, and AuCN; Z = P, As, and Sb; X = H and F) have been investigated with quantum chemical calculations. The results showed that the existence of coordination interaction has a prominent enhancing effect on the strength of pnicogen bonding. Even in ML∙∙∙PySbH2∙∙∙NH3, ML∙∙∙PyAsF2∙∙∙NH3, and ML∙∙∙PySbF2∙∙∙NH3, the pnicogen bond varies from a purely closed-shell interaction to a partially covalent interaction. The coordination interaction results in the enlargement of the σ-hole on the pnicogen atom and thus the enhancement of pnicogen bonding. In addition, the contribution of orbital interaction is also important.

The pnicogen bond is strengthened by the coordinaiton bond

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanchez-Sanz G, Trujillo C, Solimannejad M, Alkorta I, Elguero J (2013) Orthogonal interactions between nitryl derivatives and electron donors:pnictogen bonds. Phys Chem Chem Phys 15:14310–8

    Article  CAS  Google Scholar 

  2. Bauza A, Quinonero D, Deya PM, Frontera A (2012) Pnicogen–π complexes: theoretical study and biological implications. Phys Chem Chem Phys 14:14061–6

    Article  CAS  Google Scholar 

  3. Grabowski SJ (2013) σ-hole bond versus hydrogen bond: From tetravalent to pentavalent N, P, and As atoms. Chem Eur J 19:14600–11

    Article  CAS  Google Scholar 

  4. Solimannejad M, Gharabaghi M, Scheiner S (2011) SH···N and SH···P blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:024312

    Article  Google Scholar 

  5. Scheiner S (2011) A new noncovalent force: comparison of P··· N interaction with hydrogen and halogen bonds. J Chem Phys 134:094315

    Article  Google Scholar 

  6. Scheiner S (2011) Effects of substituents upon the P··· N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–9

    Article  CAS  Google Scholar 

  7. Adhikari U, Scheiner S (2012) Substituent effects on Cl··· N, S··· N, and P··· N noncovalent bonds. J Phys Chem A 116:3487–97

    Article  CAS  Google Scholar 

  8. Adhikari U, Scheiner S (2012) Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–5

    Article  CAS  Google Scholar 

  9. Scheiner S (2011) Can two trivalent N atoms engage in a direct N··· N noncovalent interaction? Chem Phys Lett 514:32–5

    Article  CAS  Google Scholar 

  10. Scheiner S (2011) On the properties of X··· N noncovalent interactions for first-, second-, and third-row X atoms. J Chem Phys 134:164313

    Article  Google Scholar 

  11. Adhikari U, Scheiner S (2011) Comparison of P··· D (D= P, N) with other noncovalent bonds in molecular aggregates. J Chem Phys 135:184306

    Article  Google Scholar 

  12. Scheiner S, Adhikari U (2011) Abilities of different electron donors (D) to engage in a P··· D noncovalent interaction. J Phys Chem A 115:11101–10

    Article  CAS  Google Scholar 

  13. Scheiner S (2011) Weak H-bonds. Comparisons of CHO to NHO in proteins and PHN to direct PN interactions. Phys Chem Chem Phys 13:13860–72

    Article  CAS  Google Scholar 

  14. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) 31 P–31 P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–7

    Article  Google Scholar 

  15. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP:NXH2 (X ═ H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724–31

    Article  Google Scholar 

  16. Adhikari U, Scheiner S (2012) Effects of carbon chain substituents on the P··· N noncovalent bond. Chem Phys Lett 536:30–3

    Article  CAS  Google Scholar 

  17. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Pnicogen–Hydride Interaction between FH2X (X= P and As) and HM (M= ZnH, BeH, MgH, Li, and Na). J Phys Chem A 116:2547–53

    Article  CAS  Google Scholar 

  18. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) Concerted interaction between pnicogen and halogen bonds in XCl... FH2P...NH3 (X= F, OH, CN, NC, and FCC). ChemPhysChem 13:1205–12

    Article  CAS  Google Scholar 

  19. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Structures, binding energies, and spin–spin coupling constants of geometric isomers of pnicogen homodimers (PHFX) 2, X= F, Cl, CN, CH3, NC. J Phys Chem A 116:3056–60

    Article  Google Scholar 

  20. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Homo-and heterochiral dimers (PHFX) 2, X= Cl, CN, CH 3, NC: To what extent do they differ? Chem Phys Lett 538:14–8

    Article  Google Scholar 

  21. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P···P pnicogen bond. J Chem Theory Comput 8:2320–7

    Article  CAS  Google Scholar 

  22. An XL, Li R, Li QZ, Liu XF, Li WZ, Cheng JB (2012) Substitution, cooperative, and solvent effects on π pnicogen bonds in the FH2P and FH2As complexes. J Mol Model 18:4325–32

    Article  CAS  Google Scholar 

  23. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2013) Exploring (NH2F) 2, H2FP: NFH2, and (PH2F) 2 potential surfaces: hydrogen bonds or pnicogen bonds? J Phys Chem A 117:183–91

    Article  CAS  Google Scholar 

  24. Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–53

    Article  CAS  Google Scholar 

  25. Del Bene JE, Alkorta I, Elguero J (2014) Influence of substituent effects on the formation of P···Cl pnicogen bonds or halogen bonds. J Phys Chem A 118:2360–6

    Article  Google Scholar 

  26. Del Bene JE, Alkorta I, Elguero J (2014) σ–σ and σ–π pnicogen bonds in complexes H2XP:PCX, for X = F, Cl, OH, NC, CN, CCH, CH3, and H. Theor Chem Accounts 133:1464

    Article  Google Scholar 

  27. Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–92

    Article  Google Scholar 

  28. Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded complexes H n F5–n P: N-base, for n= 0–5. J Phys Chem A 118:10144–54

    Article  Google Scholar 

  29. Sarkar S, Pavan MS, Guru Row TN (2015) Experimental validation of ‘pnicogen bonding’ in nitrogen by charge density analysis. Phys Chem Chem Phys 17:2330–4

    Article  CAS  Google Scholar 

  30. Alkorta I, Elguero J, Grabowski SJ (2015) Pnicogen and hydrogen bonds: complexes between PH 3 X+ and PH 2 X systems. Phys Chem Chem Phys 17:3261–72

    Article  CAS  Google Scholar 

  31. Pecina A, Lepšík M, Hnyk D, Hobza P, Fanfrlík J (2015) Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square-antiprismatic heteroboranes. J Phys Chem A 119:1388–95

    Article  CAS  Google Scholar 

  32. Setiawan D, Kraka E, Cremer D (2015) Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. J Phys Chem A 119:1642–56

    Article  CAS  Google Scholar 

  33. Joshi PR, Ramanathan N, Sundararajan K, Sankaran K (2015) Evidence for phosphorus bonding in phosphorus trichloride–methanol adduct: A matrix isolation infrared and ab initio computational study. J Phys Chem A 119:3440–51

    Article  CAS  Google Scholar 

  34. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–8

    Article  CAS  Google Scholar 

  35. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–92

    Article  CAS  Google Scholar 

  36. Zhuo HY, Li QZ, Li WZ, Cheng JB (2014) Non-additivity between substitution and cooperative effects in enhancing hydrogen bonds. J Chem Phys 141:244305

    Article  Google Scholar 

  37. Li QZ, Zhuo HY, Yang X, Cheng JB, Li WZ, Loffredo RE (2014) Cooperative and diminutive effects of pnicogen bonds and cation–π interactions. ChemPhysChem 15:500–6

    Article  CAS  Google Scholar 

  38. Zhuo HY, Li QZ, Li WZ, Cheng JB (2015) The dual role of pnicogen as Lewis acid and base and the unexpected interplay between the pnicogen bond and coordination interaction in H3N···FH2X···MCN (X = P and As; M = Cu, Ag, and Au). New J Chem 39:2067–74

    Article  CAS  Google Scholar 

  39. Esrafili MD, Fatehi P, Solimannejad M (2014) Mutual interplay between pnicogen bond and dihydrogen bond in HMH··· HCN··· PH 2 X complexes (M= Be, Mg, Zn; X= H, F, Cl). Comput Theor Chem 1034:1–6

    Article  CAS  Google Scholar 

  40. Alkorta I, Sánchez-Sanz G, Elguero J (2012) Interplay of F–H... F hydrogen bonds and P... N pnicogen bonds. J Phys Chem A 116:9205–13

    Article  Google Scholar 

  41. Hill JG, Mitrushchenkov AO, Peterson KA (2013) Ab initio ro-vibrational spectroscopy of the group 11 cyanides: CuCN, AgCN, and AuCN. J Chem Phys 138:134314

    Article  Google Scholar 

  42. Wu X, Qin ZB, Xie H, Cong R, Wu XH, Tang ZC et al (2010) Photoelectron imaging and theoretical studies of group 11 cyanides MCN (M= Cu, Ag, Au). J Phys Chem A 114:12839–44

    Article  CAS  Google Scholar 

  43. Bowmaker GA, Kennedy BJ, Reid JC (1998) Crystal structures of AuCN and AgCN and vibrational spectroscopic studies of AuCN, AgCN, and CuCN. Inorg Chem 37:3968–74

    Article  CAS  Google Scholar 

  44. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–66

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford

  46. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–91

    Article  CAS  Google Scholar 

  47. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  48. Biegler-König F (2000) AIM 2000, University of Applied Sciences, Bielefeld, Germany

  49. Gao M, Gao GQ, Li QZ, Yang X, Li WZ, Cheng JB (2015) Theoretical study of synergistic effects between anion–π and metal–Lp interactions. RSC Adv 5:76912–8

    Article  CAS  Google Scholar 

  50. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: J-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122:12835–41

    Article  CAS  Google Scholar 

  51. Zordan F, Brammer L, Sherwood P (2005) Supramolecular chemistry of halogens:  Complementary features of inorganic (M−X) and organic (C−X‘) halogens applied to M−X···X‘−C halogen bond formation. J Am Chem Soc 127:5979–89

    Article  CAS  Google Scholar 

  52. Wang YH, Wu WH, Liu YT, Lu YX (2013) Influence of transition metal coordination on halogen bonding: CSD survey and theoretical study. Chem Phys Lett 578:38–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21573188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 73 kb)

Fig. S2

(DOC 73 kb)

Table S1

(DOC 45 kb)

Table S2

(DOC 62 kb)

Table S3

(DOC 44 kb)

Table S4

(DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Li, Q. Enhancing effect of metal coordination interaction on pnicogen bonding. J Mol Model 22, 64 (2016). https://doi.org/10.1007/s00894-016-2929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2929-9

Keywords

Navigation