Skip to main content
Log in

Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–d
Fig. 6a–b
Fig. 7a–b
Fig. 8a–f
Fig. 9
Fig. 10a–c

Similar content being viewed by others

References

  1. Bird LE, Brannigan JA, Subramanya HS, Wigley DB (1998) Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism. Nucleic Acids Res 26(11):2686–2693

  2. Dillingham MS, Wigley DB, Webb MR (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39(1):205–212

  3. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struc Biol 3(3):419–429

  4. Tuteja N, Tuteja R (2004) Unraveling DNA helicases—motif, structure, mechanism and function. Eur J Biochem 271(10):1849–1863

  5. Soultanas P, Wigley DB (2001) Unwinding the ‘Gordian knot’ of helicase action. Trends Biochem Sci 26(1):47–54

    Article  CAS  Google Scholar 

  6. Soultanas P, Wigley DB (2000) DNA helicases: ‘inching forward’. Curr Opin Struc Biol 10(1):124–128

    Article  CAS  Google Scholar 

  7. Fischer CJ, Maluf NK, Lohman TM (2004) Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol 344(5):1287–1309

  8. Tomko EJ, Fischer CJ, Niedziela-Majka A, Lohman TM (2007) A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. Mol Cell 26(3):335–347

  9. Brendza KM, Cheng W, Fischer CJ, Chesnik MA, Niedziela-Majka A, Lohman TM (2005) Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc Natl Acad Sci USA 102(29):10076–10081

  10. Wong I, Lohman TM (1992) Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase DNA-binding. Science 256(5055):350–355

  11. Dittrich M, Schulten K (2006) PcrA helicase, a prototype ATP-driven molecular motor. Structure 14(9):1345–1353

    Article  CAS  Google Scholar 

  12. Soultanas P, Dillingham MS, Velankar SS, Wigley DB (1999) DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase. J Mol Biol 290(1):137–148

    Article  CAS  Google Scholar 

  13. Ali JA, Lohman TM (1997) Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science 275(5298):377–380

  14. Mackintosh SG, Raney KD (2006) DNA unwinding and protein displacement by superfamily 1 and superfamily 2 helicases. Nucleic Acids Res 34(15):4154–4159

    Article  CAS  Google Scholar 

  15. Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97(1):75–84

    Article  CAS  Google Scholar 

  16. Niedziela-Majka A, Chesnik MA, Tomko EJ, Lohman TM (2007) Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem 282(37):27076–27085

  17. Tuteja N, Tuteja R (2004) Unraveling DNA helicases. motif, structure, mechanism and function (vol 271, pg 1849, 2004). Eur J Biochem 271(15):3283–3283

    Article  CAS  Google Scholar 

  18. Yu J, Ha T, Schulten K (2006) Structure-based model of the stepping motor of PcrA helicase. Biophys J 91(6):2097–2114

    Article  CAS  Google Scholar 

  19. Yu J, Ha T, Schulten K (2007) How directional translocation is regulated in a DNA helicase motor. Biophys J 93(11):3783–3797

    Article  CAS  Google Scholar 

  20. Betterton MD, Julicher F (2005) Opening of nucleic-acid double strands by helicases: active versus passive opening (vol 71, pg 11904, 2005). Phys Rev E 72(2)

  21. Cox K, Watson T, Soultanas P, Hirst JD (2003) Molecular dynamics simulations of a helicase. Proteins 52(2):254–262

    Article  CAS  Google Scholar 

  22. MacKerell AD, Nilsson L (2008) Molecular dynamics simulations of nucleic acid–protein complexes. Curr Opin Struc Biol 18(2):194–199

  23. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

  24. Myong S, Rasnik I, Joo C, Lohman TM, Ha T (2005) Repetitive shuttling of a motor protein on DNA. Nature 437(7063):1321–1325

    Article  CAS  Google Scholar 

  25. Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G (1997) Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90(4):635–647

  26. Rasnik I, Myong S, Cheng W, Lohman TM, Ha T (2004) DNA-binding orientation and domain conformation of the E. coli Rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J Mol Biol 336(2):395–408

  27. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

  28. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

  29. Hess B (2009) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Abstr Pap Am Chem S 237

  30. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  31. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  32. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  Google Scholar 

  33. Toukan K, Rahman A (1985) Molecular dynamics study of atomic motions in water. Phys Rev B 31(5):2643–2648

  34. Debye P (1909) Approximation formula for cylindrical function in high value arguments and alterable index values. Math Ann 67:535–558

    Article  Google Scholar 

  35. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

  36. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

  37. Darden T, York D, Pedersen L (1993) Particle mesh ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

  38. Patey GN, Valleau JP (1973) Free energy of spheres with dipoles—Monte Carlo with multistage sampling. Chem Phys Lett 21(2):297–300

  39. Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-Boltzmann sampling—application to subcritical Lennard–Jones fluid. Chem Phys Lett 28(4):578–581

  40. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation—umbrella sampling. J Comput Phys 23(2):187–199

  41. Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput 3(1):26–41

    Article  CAS  Google Scholar 

  42. Hub JS, de Groot BL, van der Spoel D (2010) g_wham: a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6(12):3713–3720

  43. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72(10):5639–5648

  44. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654

  45. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120(1–3):215–241

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  48. Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B 114(4):1652–1660

    Article  CAS  Google Scholar 

  49. Shams H, Golji J, Mofrad Mohammad RK (2012) A molecular trajectory of α-actinin activation. Biophys J 103(10):2050–2059

    Article  CAS  Google Scholar 

  50. Pathak AK, Bandyopadhyay T (2014) Unbinding free energy of acetylcholinesterase bound oxime drugs along the gorge pathway from metadynamics—umbrella sampling investigation. Proteins Struct Funct Bioinform 82(9):1799–1818

  51. Sinha V, Ganguly B, Bandyopadhyay T (2012) Energetics of ortho-7 (oxime drug) translocation through the active-site gorge of tabun conjugated acetylcholinesterase. Plos One 7(7)

  52. De Angeli A, Moran O, Wege S, Filleur S, Ephritikhine G, Thomine S et al (2009) ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J Biol Chem 284(39):26526–26532

  53. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

  54. Hayward S, Go N (1995) Collective variable description of native protein dynamics. Annu Rev Phys Chem 46:223–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Olav Schiemann University of Bonn, Germany for useful discussions. Authors ARM, CKC, and SR would like to thank Ms. Swagata Pahari for helping with the quantum-chemical calculations. The authors would also like to acknowledge the financial support from the Board of Research in Nuclear Sciences (project code GAP295526), India, for this work. Author Anil R. Mhashal would like to thank CSIR-UGC, India for providing the fellowship. Author Sudip Roy gratefully acknowledges CSIR-4PI for computational time and NCL (project code CSC0129) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4806 kb)

ESM 2

(MPG 26399 kb)

ESM 3

(MPG 5356 kb)

ESM 4

(MPG 4850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhashal, A.R., Choudhury, C.K. & Roy, S. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation. J Mol Model 22, 54 (2016). https://doi.org/10.1007/s00894-016-2922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2922-3

Keywords

Navigation