Skip to main content
Log in

Molecular dynamics simulations of a lithium/sodium carbonate mixture

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The diffusion and ionic conductivity of Li x Na1−x CO3 salt mixtures were studied by means of Molecular Dynamics (MD) simulations, using the Janssen and Tissen model (Janssen and Tissen, Mol Simul 5:83–98; 1990). These salts have received particular attention due to their central role in fuel cells technology, and reliable numerical methods that could perform as important interpretative tool of experimental data are thus required but still lacking. The chosen computational model nicely reproduces the main structural behaviour of the pure Li2CO3, Na2CO3 and K2CO3 carbonates, but also of their Li/K and Li/Na mixtures. However, it fails to accurately describe dynamic properties such as activation energies of diffusion and conduction processes, outlining the need to develop more accurate models for the simulation of molten salt carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Janz GJ, Lorenz MR (1961) Molten carbonate electrolytes: physical properties, structure, and mechanism of electrical conductance. J Electrochem Soc 108:1052–1058

    Article  CAS  Google Scholar 

  2. Zarzycki J (1961) High-temperature x-ray diffraction studies of fused salts - structure of molten alkali carbonates and sulphates. Discuss Faraday Soc 32:38–48

    Article  Google Scholar 

  3. Tomczyk P (1994) Kinetics of the oxygen electrode reaction in molten Li + Na carbonate eutectic part 7. effect of CO2 partial pressure on the linear scan voltammetric response for the reduction process at gold electrodes. J Electroanal Chem 379:353–360

    Article  Google Scholar 

  4. Cassir M, Olivry M, Albin V, Malinowska B, Devynck J (1998) Thermodynamic and electrochemical behavior of nickel in molten Li2CO3Na2CO3 modified by addition of calcium carbonate. J Electroanal Chem 452:127–137

    Article  CAS  Google Scholar 

  5. Kohara S, Badyal YS, Koura N, Idemoto Y, Takahashi S, Curtiss LA, Saboungi ML (1998) The structure of molten alkali carbonates studied by neutron diffraction and ab initio calculations. J Phys Condens Matter 10:3301–3308

    Article  CAS  Google Scholar 

  6. Kojima T, Miyazaki Y, Nomura K, Tanimoto K (2008) Density, surface tension, and electrical conductivity of ternary molten carbonate system Li2CO3 - Na2CO3 -K2CO3 and methods for their estimation. J Electrochem Soc 155:F150–F156

    Article  CAS  Google Scholar 

  7. Janowitz K, Kah M, Wendt H (1999) Molten carbonate fuel cell research: Part i. comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts. Electrochim Acta 45:1025–1037

    Article  CAS  Google Scholar 

  8. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in earths interior. Earth Planet Sci Lett 298 :1–13

    Article  CAS  Google Scholar 

  9. Nafe H (2013) Conductivity of alkali carbonates, carbonate-based composite electrolytes and IT-SOFC. ECS J Solid State Sci Technol 3:N7–N14

    Article  Google Scholar 

  10. Meléndez-Ceballos A, Albin V, Fernández-Valverde S, Ringuedé A, Cassir M (2014) Electrochemical properties of atomic layer deposition processed CeO2 as a protective layer for the molten carbonate fuel cell cathode. Electrochim Acta 140:174–181

    Article  Google Scholar 

  11. Cowley ER, Pant AK (1973) Lattice dynamics of calcite. Phys Rev B Solid State 8:4795–4800

    Article  CAS  Google Scholar 

  12. Janssen GJM, Tissen JTWM (1990) Pair potentials from ab initio calculations for use in md simulations of molten alkali carbonates. Mol Simul 5:83–98

    Article  Google Scholar 

  13. Habasaki J (1990) Molecular dynamics simulation of molten Li2CO3 and Na2CO3. Mol Phys 69:115–128

    Article  CAS  Google Scholar 

  14. Dove MT, Winkler B, Leslie M, Harris MJ, Salje E (1992) A new interatomic potential model for calcite - applications to lattice-dynamics studies, phase-transition, and isotope fractionation. Am Mineral 77:244–250

    CAS  Google Scholar 

  15. Koishi T, Kawase S, Tamaki S, Ebisuzaki T (2000) Computer simulation of molten Li2CO3K 2CO3 mixtures. J Phys Soc Jpn 69:3291–3296

    Article  CAS  Google Scholar 

  16. Costa MF, Ribeiro MCC (2008) Erratum to “molecular dynamics of molten Li2CO3K 2CO3” [j. mol. liq. 138 (2008) 61-68]. J Mol Liq 142:161–161

    Article  CAS  Google Scholar 

  17. Jin-Li Z, Zheng-Hua H, You H, Wei L, Jiang-Jie-Xing W, Gan Zhong-Xue GJJ (2012) Nucleation and growth of Na2CO3 clusters in supercritical water using molecular dynamics simulation. Acta Phys-Chim Sin 28:1691–1700

    Google Scholar 

  18. Vuilleumier R, Seitsonen A, Sator N, Guillot B (2014) Structure, equation of state and transport properties of molten calcium carbonate (CaCO3) by atomistic simulations. Geochim Cosmochim Acta 141:547–566

    Article  CAS  Google Scholar 

  19. Landes H, Luft G, Mund K, Rummel W (1990) Electrochemical properties of a molten carbonate fuel cell. Ber Bunsenges Physik Chem 94:952–956

    Article  CAS  Google Scholar 

  20. Antolini E (2011) The stability of molten carbonate fuel cell electrodes: a review of recent improvements. Appl Energy 88:4274–4293

    Article  CAS  Google Scholar 

  21. Mitsushima S, Matsuzawa K, Kamiya N, Ota K (2002) Improvement of MCFC cathode stability by additives. Electrochim Acta 47:3823–3830

    Article  CAS  Google Scholar 

  22. Wee JH, Lee KY (2006) Overview of the effects of rare-earth elements used as additive materials in molten carbonate fuel cell systems. J Mater Sci 41:3585–3592

    Article  CAS  Google Scholar 

  23. Kim SG, Jun Jh, Jun J (2006) Predictions of the optimum ternary alkali-carbonate electrolyte composition for MCFC by computational calculation. J Power Sources 160:805–810

    Article  CAS  Google Scholar 

  24. Martyna GJ, Klein ML, Tuckerman M (1992) Noséhoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643

    Article  Google Scholar 

  25. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  26. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill International Book Co., New York

    Google Scholar 

  27. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  28. Hansen JP, McDonald IR (2006) Theory of the simple liquids, 3rd Edition. Academic, Burlington

    Google Scholar 

  29. Agarwal M, Chakravarty C (2009) Evaluation of collective transport properties of ionic melts from molecular dynamics simulations. J Chem Sci (Berlin Ger) 121:913–919

    CAS  Google Scholar 

  30. Tissen J, Janssen G (1990) Molecular-dynamics simulation of molten alkali carbonates. Mol Phys 71:413–426

    Article  CAS  Google Scholar 

  31. Bongiorno A, Pasquarello A (2004) Multiscale modeling of oxygen diffusion through the oxide during silicon oxidation. Phys Rev B Condens Matter Mater Phys 195312–195326:70

    Google Scholar 

  32. Perriot R, Liu XY, Stanek CR, Andersson DA (2015) Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO2. J Nucl Mater 459:90–96

    Article  CAS  Google Scholar 

  33. Sangiovanni DG, Alling B, Steneteg P, Hultman L, Abrikosov IA (2015) Nitrogen vacancy, self-interstitial diffusion, and Frenkel-pair formation/dissociation in B1 TiN studied by ab initio and classical molecular dynamics with optimized potentials. Phys Rev B Condens Matter Mater Phys 054301–054318:91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Adamo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottochian, A., Ricca, C., Labat, F. et al. Molecular dynamics simulations of a lithium/sodium carbonate mixture. J Mol Model 22, 61 (2016). https://doi.org/10.1007/s00894-016-2921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2921-4

Keywords

Navigation