Skip to main content
Log in

Optimization of enrofloxacin-imprinted polymers by computer-aided design

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, a series of computational and combinatorial approaches were employed to improve the efficiency of screening for optimal molecularly imprinted polymer (MIP) systems. In the present work, we investigated MIP systems based on enrofloxacin (ENRO) as the template molecule and either 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT), 4-vinylpyridine (4-Vpy), acrylamide (AM), or trifluoromethacrylic acid (TFMAA) as the functional monomer. The optimized geometries of these systems, the optimal molar ratios of template to functional monomer, and the active sites in the systems were all identified using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. The imprinting mechanism was investigated by calculating the hydrogen nuclear magnetic resonance (1H NMR) spectra of the systems. The simulated results revealed that the MIP system corresponding to a 1:7 complex of TFMAA and ENRO contained the most H-bonds and presented the lowest (i.e., most negative) binding energy and the strongest interactions. MIPs of ENRO with the four functional monomers were prepared based on the optimal molar ratios of template to functional monomer determined in the simulations. Adsorption experiments suggested that TFMAA has the highest affinity (saturated adsorption 30.25 mg/g) among the four monomers for the template. Thus, we determined the optimal monomer and imprinting ratio for ENRO-imprinted MIPs and predicted their adsorption characteristics.

The preparation and extraction processes of MIPs with ENRO as template, TFMAA as functional monomer, and EDMA as cross-linker

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–e
Fig. 3
Fig. 4a–d
Fig. 5a–b

Similar content being viewed by others

References

  1. Ziółkowski H, Jaroszewski JJ, Maślanka T, Grabowski T, Katolik K, Pawęska J, Siemianowska M, Jasiecka A, Markiewicz W, Spodniewska A (2014) Res Vet Sci 97:99–104

    Article  Google Scholar 

  2. Neves P, Berkane E, Gameiro P, Winterhalter M, de Castro B (2005) Biophys Chem 113:123–128

    Article  CAS  Google Scholar 

  3. Babaahmady E, Khosravi A (2011) Afr J Pharm Pharmcol 5:2042–2045

    Article  CAS  Google Scholar 

  4. Marchese S, Gentili A, Perret D (2005) TrAC Trend Anal Chem 24:704–733. doi:10.1016/j.trac.2005.02.007

  5. Piacham T, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013) Excli J 12:701–718

    Google Scholar 

  6. Ebrahimzadeh H, Molaei K, Asgharinezhad AA, Shekari N, Dehghani Z (2013) Anal Chim Acta 767:155–162

    Article  CAS  Google Scholar 

  7. Muhammad T, Cui L, Jide W, Piletska EV, Guerreiro AR, Piletsky SA (2012) Anal Chim Acta 709:98–104

    Article  CAS  Google Scholar 

  8. Moreno-Bondi MC, Benito-Peña ME, Urraca JL, Orellana G (2012) Top Curr Chem 325:111–164. doi:10.1007/128_2010_94

    Article  CAS  Google Scholar 

  9. Chianella I, Guerreiro A, Moczko E, Caygill JS, Piletska EV, De Vargas Sansalvador IMP, Whitcombe MJ, Piletsky SA (2013) Anal Chem 85:8462–8468

    Article  CAS  Google Scholar 

  10. Granado VLV, Gutiérrez-Capitán M, Fernández-Sánchez C, Gomes MTSR, Rudnitskaya A, Jimenez-Jorquer (2014) Anal Chim Acta 809:141–147

    Article  CAS  Google Scholar 

  11. Barkaline VV, Douhaya YV, Tsakalof A (2013) J Mol Model 19:359–369

    Article  CAS  Google Scholar 

  12. Liu LK, Cao Y, Ma PF, Qiu CX, Xu WZ, Liu H, Huang WH (2014) RSC Adv 4:605–616

    Article  CAS  Google Scholar 

  13. Cleland D, Olsson GD, Karlsson BCG, Nicholls IA, McCluskey A (2014) Org Biomol Chem 12:844–853

    Article  CAS  Google Scholar 

  14. Liu JB, Shi Y, Tang SS, Jin RF (2015) J Sep Sci 38:1065–1071

    Article  CAS  Google Scholar 

  15. Liu JB, Dai ZQ, Li B, Tang SS, Jin RF (2015) J Mol Model 20:2456–2465

    Article  Google Scholar 

  16. Caro E, Marcé RM, Cormack PAG, Sherringtonb DC, Borrulla F (2006) Anal Chim Acta 562:145–151

    Article  CAS  Google Scholar 

  17. Lu YK, Liu Y, Bian C, Lu GD, Qin XY (2009) CJI 11:26

    Google Scholar 

  18. Li XX, Bai LH, Wang H, Wang J, Huang YP, Liu ZS (2012) J Chromatogr A 1251:141–147

    Article  CAS  Google Scholar 

  19. Wang YL, Liu JB, Tang SS, Chang HB, Liang DD (2013) Chem J Chin U 34:2880–2886. doi:10.7503/cjcu20130787

    CAS  Google Scholar 

  20. Lv YK, Zhang Q, Song YL, Yan SL (2011) Asian J Chem 23:4037–4041

    CAS  Google Scholar 

  21. Slinchenko O, Rachkov A, Miyachi H, Ogiso M, Minoura N (2004) Biosens Bioelectron 20:1091–1097

    Article  CAS  Google Scholar 

  22. Ogiso M, Minoura N, Shinbo T, Shimizu T (2006) Biomaterials 27:4177–4182

    Article  CAS  Google Scholar 

  23. Hoshina K, Horiyama S, Matsunaga H, Haginaka J (2011) J Pharma Biomed 55:916–922

    Article  CAS  Google Scholar 

  24. Hiratsuka Y, Funaya N, Matsunaga H, Haginaka J (2013) J Pharma Biomed 75:180–185

    Article  CAS  Google Scholar 

  25. Reddy SM, Hawkins DM, Phan QT, Stevenson D (2013) Sensor Actuators B 176:190–197

  26. EL-Sharif HF, Hawkins DM, Stevenson D, Reddy SM (2014) Phys Chem Chem Phys 16:15483–15489

    Article  CAS  Google Scholar 

  27. Subrahmanyam S, Guerreiro A, Poma A, Moczko E, Piletska E, Piletsky S (2013) Eur Polym J 49:100–105

    Article  CAS  Google Scholar 

  28. Lata K, Sharma R, Naik L, Rajput YS, Mann B (2015) Food Chem 184:176–182

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baroe V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A.2. Gaussian Inc., Pittsburgh

  30. Sastri VS, Perumareddi JR (1997) Corrosion 53:617–622

    Article  CAS  Google Scholar 

  31. Parr RG, Szentpály LV, Liu SB (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  32. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  33. Houk KN (1975) Acc Chem Res 8:361–369

    Article  CAS  Google Scholar 

  34. Dong WG, Yan M, Liu Z, Wu SG, Li YM (2007) Sep Purif Technol 53:183–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (no. 21302062), the Natural Science Foundation of Jilin Province (no. 201215180), and the Science and Technology Development Plan of Jilin Province (nos. 20130206099SF and 20150101018JC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Liu or Shanshan Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Liu, J., Tang, S. et al. Optimization of enrofloxacin-imprinted polymers by computer-aided design. J Mol Model 21, 290 (2015). https://doi.org/10.1007/s00894-015-2836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2836-5

Keywords

Navigation