Skip to main content
Log in

Simultaneous interactions of pyrimidine ring with BeF2 and BF3 in BeF2⋅⋅⋅X–Pyr⋅⋅⋅BF3 complexes: non-cooperativity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigated the mutual interplay between beryllium and boron bonds in the BeF2⋅⋅⋅X−Pyr⋅⋅⋅BF3 complexes (X = CN, F, Cl, Br, H, CH3, OH and NH2, where Pyr and ⋅⋅⋅ denote pyrimidine ring and beryllium and boron bonds, respectively) at the M06-2X/aug-cc-pVDZ level of theory. The results indicate that non-cooperative effects are observed when the two kinds of noncovalent interactions beryllium and boron bonds coexist in the complexes. These effects were studied in terms of the energetic and geometric features of the complexes. Atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also performed to unveil the mechanism of these interactions in the title complexes. The electron-withdrawing/donating substituents decrease/increase the magnitude of the binding energies compared to the unsubstituted BeF2⋅⋅⋅X-Pyr⋅⋅⋅BF3 (X = H) complex. The Esynvalues are in agreement with the geometric features of the complexes. The results stress the importance of the mutual effects between noncovalent interactions involving aromatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Smith EL, Sadowsky D, Phillips JA, Cramer CJ, Giesen DJ (2010) A short yet very weak dative bond: structure, bonding, and energetic properties of N2−BH3. J Phys Chem A 114:2628–2636

    Article  CAS  Google Scholar 

  2. Smith EL, Sadowsky D, Cramer CJ, Phillips JA (2011) Structure, bonding, and energetic properties of nitrile−borane complexes: RCN−BH3. J Phys Chem A 115:1955–1963

    Article  CAS  Google Scholar 

  3. Giesen DJ, Phillips JA (2003) Structure, bonding, and vibrational frequencies of CH3CN−BF3: new insight into medium effects and the discrepancy between the experimental and theoretical geometries. J Phys Chem A 107:4009–4018

    Article  CAS  Google Scholar 

  4. Phillips JA, Giesen DJ, Wells NP, Halfen JA, Knutson CC, Wrass JP (2005) Condensed-phase effects on the structural properties of C6H5CN−BF3 and (CH3)3CCN−BF3: IR spectra, crystallography, and computations. J Phys Chem A 109:8199–8208

    Article  CAS  Google Scholar 

  5. Pepi F, Ricci A, Garzoli S, Rosi M (2006) Gas-phase ion chemistry of BF3/NH3 mixtures. J Phys Chem A 110:12427–12433

    Article  CAS  Google Scholar 

  6. Venter G, Dillen J (2004) Crystalline effects on the properties of the dative bond: a computational study of HCN−BF3. J Phys Chem A 108:8378–8384

    Article  CAS  Google Scholar 

  7. Saenz P, Cachau RE, Seoane G, Kieninger M, Ventura ON (2006) A new perspective in the lewis acid catalyzed ring opening of epoxides. Theoretical study of some complexes of methanol, acetic acid, dimethyl ether, diethyl ether, and ethylene oxide with boron trifluoride. J Phys Chem A 110:11734–11751

    Article  CAS  Google Scholar 

  8. Rode JE, Jamroz MH, Dobrowolski JC, Sadlej J (2012) On vibrational circular dichroism chirality transfer in electron donor–acceptor complexes: a prediction for the quinine⋅⋅⋅BF3 system. J Phys Chem A 116:7916–7926

    Article  CAS  Google Scholar 

  9. Alkorta I, Elguero J, Yanez M, Mo O (2014) Cooperativity in beryllium bonds. Phys Chem Chem Phys 16:4305–4312

    Article  CAS  Google Scholar 

  10. Alkorta I, Elguero J, Yanez M, Mo O, Del Bene JE (2015) Using beryllium bonds to change halogen bonds from traditional to chlorine-shared to ion-pair bonds. Phys Chem Chem Phys 17:2259–2267

    Article  CAS  Google Scholar 

  11. Yanez M, Sanz P, Mo O, Alkorta I, Elguero J (2009) Beryllium bonds, do they exist? J Chem Theory Comput 5:2763–2771

    Article  CAS  Google Scholar 

  12. Becke AD (1993) Density functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  14. Boys SB, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  15. Biegler Konig F, Schonbohm WJ, Bayle D, AIM2000 (1982) Calculation of the average properties of atoms in molecules. II. J Comput Chem 13:317–328

    Article  Google Scholar 

  16. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1

  17. Schmidt MW, Baldridge KK, Boat JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  18. Ebrahimi A, Habibi M, Neyband RS, Gholipour AR (2009) Cooperativity of π-stacking and hydrogen bonding interactions and substituent effects on X-ben||pyr…H–F complexes. Phys Chem Chem Phys 11:11424–11431

    Article  CAS  Google Scholar 

  19. Gholipour AR, Saydi H, Neiband MS, Neyband RS (2012) Simultaneous interactions of pyridine with substituted benzene ring and H-F in X-ben⊥pyr⋅⋅⋅H-F complexes: a cooperative study. Struct Chem 23:367–373

    Article  CAS  Google Scholar 

  20. Solimannejad M, Gholipour AR (2013) Revealing substituent effects on the concerted interaction of pnicogen, chalcogen, and halogen bonds in substituted s-triazine ring. Struct Chem 24:1705–1711

    Article  CAS  Google Scholar 

  21. Solimannejad M, Gholipour AR (2014) Mutual interplay between π-electron interactions and simultaneous σ-hole interactions: a computational study. Phys Chem Res 2:1–10

    Google Scholar 

  22. Zhu W, Tan X, Shen J, Luo X, Cheng F, Mok PC, Ji R, Chen K, Jiang H (2003) Differentiation of cation−π bonding from cation−π intermolecular interactions: a quantum chemistry study using density-functional theory and morokuma decomposition methods. Phys Chem A 107:2296–2303

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Gholipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, S., Gholipour, A. Simultaneous interactions of pyrimidine ring with BeF2 and BF3 in BeF2⋅⋅⋅X–Pyr⋅⋅⋅BF3 complexes: non-cooperativity. J Mol Model 21, 253 (2015). https://doi.org/10.1007/s00894-015-2795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2795-x

Keywords

Navigation