Skip to main content
Log in

A comparative study of the chalcogen bond, halogen bond and hydrogen bond S⋯O/Cl/H formed between SHX and HOCl

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ab initio quantum chemistry methods were used to analyze the noncovalent interactions between HOCl and SHX (X = F, CN, NC, Cl, Br, NO2, CCH, CH3, H). Three energetic minimal configurations were characterized for each case, where the S center acts as a Lewis acid interacting with O to form a chalcogen bond, as well as a Lewis base interacting with Cl or H of HOCl to form halogen bond and hydrogen bond, respectively. An electronegative substituent such as F, CN, NC and NO2 tends to form a stronger chalcogen bond, while an electropositive substituent such as CCH, CH3 and H is inclined to form a more stable H-bonded complex. The chalcogen-bonded, halogen-bonded and H-bonded complexes are stabilized by charge transfers from Lp(O) to σ*(SX), from Lp(S) to σ*(ClO), and from Lp(S) to σ*(HO), respectively. As a result, the SHX unit becomes positively charged in halogen-bonded and hydrogen-bonded complexes but negatively charged in chalcogen-bonded complexes. Theory of atoms in molecules, natural bond orbital analysis, molecular electrostatic potential and localized molecular orbital energy decomposition analysis were applied to investigate these noncovalent bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  3. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  4. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Dordrecht

    Book  Google Scholar 

  5. Thakur TS, Kirchner MT, Bläser D, Boese R, Desiraju GR (2011) Phys Chem Chem Phys 13:14076–14091

    Article  CAS  Google Scholar 

  6. Peris E, Lee JCJ, Rambo J, Eisenstein O, Crabtree RH (1995) J Am Chem Soc 117:3485

    Article  CAS  Google Scholar 

  7. Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:10296

    Article  CAS  Google Scholar 

  8. Pauling L (1960) The nature of the chemical bond, 3rd edn. Ithaca, Cornell University Press

    Google Scholar 

  9. Grabowski SJ, Sokalski WA, Leszczynski (2006) J Chem Phys Lett 422:334

    Article  CAS  Google Scholar 

  10. Zordan F, Brammer L, Sherwood P (2005) J Am Chem Soc 127:5979

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  12. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305

    Article  CAS  Google Scholar 

  13. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS (2011) Cryst Eng Comm 13:6593–6596

    Article  Google Scholar 

  15. Metrangolo P, Murray JS, Pilati T, Politzer P et al (2011) Cryst Growth Des 11:4238–4246

    Article  CAS  Google Scholar 

  16. Bernard-Houplain MC, Sandorfy C (1973) Can J Chem 51:3640–3647

    Article  CAS  Google Scholar 

  17. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  18. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232

    Article  CAS  Google Scholar 

  19. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem 44:57

    Article  Google Scholar 

  20. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  21. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  22. Murray J, Lane P, Politzer P (2009) J Mol Model 15:723

    Article  CAS  Google Scholar 

  23. Mohajeri A, Pakirai AH, Bagheri N (2009) Chem Phys Lett 467:393–397

    Article  CAS  Google Scholar 

  24. Scheiner S (2011) J Phys Chem A 115:11202

    Article  CAS  Google Scholar 

  25. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–9

    Article  CAS  Google Scholar 

  26. Scheiner S (2013) Acc Chem Res 46:280–288

    Article  CAS  Google Scholar 

  27. Politzer P, Murray J, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS, Lane P, Clark T (2014) Top Curr Chem. doi:10.1007/128_2014_568

    Google Scholar 

  29. Rosenfield RE, Parthasarathy JR, Dunitz JD (1977) J Am Chem Soc 99:4860–4862

    Article  CAS  Google Scholar 

  30. Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479

    Article  Google Scholar 

  31. Alikhani E, Fuster F, Madebene B, Grabowski SJ (2014) Phys Chem Chem Phys 16:2430–2442

    Article  CAS  Google Scholar 

  32. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:59–73

    Google Scholar 

  33. Weinhold F, Landis C (2005) Valency and bonding: a natural bond orbital donor acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Li AY (2007) J Chem Phys 126:154102

    Article  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  36. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  37. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  38. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  39. Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, Harlow

    Google Scholar 

  40. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Einham

    Book  Google Scholar 

  41. Keith TA (2011) AIMAll, version 11.08.23. TK Gristmill Software, Overland Park

    Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2004) NBO 5.G. University of Wisconsin, Madison

    Google Scholar 

  44. Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  45. Schmidt M, Baldridge W, Boatz KK, Elbert JA, Gordon ST, Jensen MS, Koseki JH, Matsunaga S, Nguyen N, Sus KA et al (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  46. Szawomir J, Grabowski J (2011) J Phys Chem A 115:12340–12347

    Article  Google Scholar 

  47. Bent HA (1961) Chem Rev 61:275

    Article  CAS  Google Scholar 

  48. Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Chem Phys Chem 13:496–503

    CAS  Google Scholar 

  49. Weinhold F, Landis C (2005) Valency and bonding. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Yong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Li, A.Y. & Ma, F.Y. A comparative study of the chalcogen bond, halogen bond and hydrogen bond S⋯O/Cl/H formed between SHX and HOCl. J Mol Model 21, 61 (2015). https://doi.org/10.1007/s00894-015-2612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2612-6

Keywords

Navigation