Skip to main content
Log in

Mono and digallium selenide clusters as potential superhalogens

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a systematic theoretical study on mono and digallium selenide clusters, Ga m Se n (m = 1, 2 and n  =  1-4), along with their negatively and positively charged counterparts. Different theoretical methods, namely density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2) and coupled cluster singles and doubles, including non-iterative triples [CCSD(T)], were employed in conjunction with the 6-311+G(2df) basis set. The lowest-energy configurations of gallium selenides prefer to be planar, with the exception of cationic GaSe4 and Ga2Se4. The adiabatic electron affinities (AEA) of Ga m Se n (m = 1, 2 and n  = 1-4) clusters range from 1.07 to 3.78 eV, and their adiabatic ionization potentials (AIP) vary from 7.57 to 8.76 eV using the CCSD(T)//B3LYP level of theory. It was found that the AEAs of gallium selenides do not depend solely on the electrophilicity of the clusters but also on their electronic structures. No significant trend was observed in the AIP values and HOMO–LUMO (H–L) gaps with increase in cluster size of the mono and digallium selenide series. Among the dissociation channels, the decomposition of GaSe4 → GaSe2 + Se2 was found to be thermodynamically most favored. Furthermore, the AEAs of GaSe2, GaSe3, GaSe4 and Ga2Se4 were found to exceed that of the chlorine atom and are therefore termed as ‘superhalogens’. Finally, the AEAs of the Ga2X n  (X = O–Se; n = 2–4) series were found to be almost similar.

Gallium selenide clusters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan PM (2013) Nano Lett 13:2777–2781

    Article  CAS  Google Scholar 

  2. Leontie L, Evtodiev I, Nedeff V, Stamate M, Caraman M (2009) Appl Phys Lett 94:071903–071903-3

    Article  Google Scholar 

  3. Late DJ, Liu B, Luo J, Yan A, Matte HSSR, Grayson M, Rao CNR, Dravid VP (2012) Adv Mater 24:3549–3554

    Article  CAS  Google Scholar 

  4. Hu PA, Wen ZZ, Wang LF, Tan PH, Xiao K (2012) ACS Nano 6:5988–5994

    Article  CAS  Google Scholar 

  5. Zhang YF, Wang R, Kang ZH, Qu LL, Jiang Y, Gao JY, Andreev YM, Lanskii GV, Kokh KA, Morozov AN, Shaiduko AV, Zuev VV (2011) Opt Commun 284:1677–1681

    Article  CAS  Google Scholar 

  6. Gujar TP, Shinde VR, Park JW, Lee HK, Jung KD, Joo OS (2008) 54:829–834

  7. Ma Y, Dai Y, Guo M, Yu L, Huang B (2013) Phys Chem Phys 15:7098–7105

    Article  CAS  Google Scholar 

  8. Zhuang HL, Hennig RG (2013) Chem Mater 25:3235–3238

    Article  Google Scholar 

  9. Tang G, Yang Z, Luo L, Chen W (2008) J Alloy Compd 459:472–476

    Article  CAS  Google Scholar 

  10. Harvey TB, Mori I, Stolle CJ, Bogart TD, Ostrowski DP, Glaz MS, Du J, Pernik DR, Akhavan VA, Kesrouani H, Vanden Bout DA, Korgel BA (2013) ACS Appl Mater Interfaces 5:9134–9140

    Article  CAS  Google Scholar 

  11. Johnsen S, Liu Z, Peters JA, Song JH, Peter SC, Malliakas CD, Cho NK, Jin H, Freeman AJ, Wessels BW, Kanatzidis MG (2011) Chem Mater 23:3120–3128

    Article  CAS  Google Scholar 

  12. Joshi NV, Luengo J, Vera F (2007) Mater Lett 61:1926–1928

    Article  CAS  Google Scholar 

  13. Bu X, Zheng N, Wang X, Wang B, Feng P (2004) Angew Chem Int Ed 43:1502–1505

    Article  CAS  Google Scholar 

  14. Mao A, Aitken BG, Youngman RE, Kaseman CD, Sen S (2013) J Phys Chem B 117:16594–16601

    Article  CAS  Google Scholar 

  15. Vaqueiro P (2010) Dalton Trans 39:5965–5972

    Article  CAS  Google Scholar 

  16. Xu G, Guo P, Song S, Zhang H, Wang C (2009) Inorg Chem 48:4628–4630

    Article  CAS  Google Scholar 

  17. Wu T, Bu X, Zhao X, Khazhakyan R, Feng P (2011) J Am Chem Soc 133:9616–9626

    Article  CAS  Google Scholar 

  18. Dong Y, Peng Q, Wang R, Li Y (2003) Inorg Chem 42:1794–1796

    Article  CAS  Google Scholar 

  19. Yu P, Zhou LJ, Chen L (2012) J Am Chem Soc 134:2227–2235

    Article  CAS  Google Scholar 

  20. Uy OM, Muenow DW, Ficalora PJ, Margrave JL (1968) Trans Faraday Soc 64:2998–3005

    Article  CAS  Google Scholar 

  21. Gowtham S, Costales A, Pandey R (2004) J Phys Chem B 108:17295–17300

    Article  CAS  Google Scholar 

  22. Archibong EF, Mvula EN (2005) Chem Phys Lett 408:371–376

    Article  CAS  Google Scholar 

  23. Gowtham S, Deshpande M, Costales A, Pandey R (2005) J Phys Chem B 109:14836–14844

    Article  CAS  Google Scholar 

  24. Seeburrun N, Archibong EF, Ramasami P (2008) Chem Phys Lett 467:23–27

    Article  CAS  Google Scholar 

  25. BelBruno JJ, Sanville E, Burnin A, Muhangi AK, Malyutin A (2009) Chem Phys Lett 478:132–138

    Article  CAS  Google Scholar 

  26. Seeburrun N, Abdallah HH, Archibong EF, Ramasami P (2011) Eur Phys J D 63:351–358

    Article  CAS  Google Scholar 

  27. Archibong EF, Ramasami P (2011) Comput Theor Chem 964:324–328

    Article  CAS  Google Scholar 

  28. Seeburrun N, Abdallah HH, Ramasami P (2012) J Phys Chem A 116:3215–3223

    Article  CAS  Google Scholar 

  29. Seeburrun N, Abdallah HH, Archibong EF, Ramasami P (2014) Struc Chem 25:755–766

    Article  CAS  Google Scholar 

  30. Gutsev GL, Boldyrev AI (1981) Chem Phys 56:277–283

    Article  CAS  Google Scholar 

  31. Hotop H, Lineberger WC (1985) J Phys Chem Ref Data 14:731–750

    Article  CAS  Google Scholar 

  32. Gutsev GL, Boldyrev AI (1981) Chem Phys Lett 84:352–355

    Article  CAS  Google Scholar 

  33. Bartlett N (1962) Proc Chem Soc 6:218–218

    Google Scholar 

  34. Gutsev GL, Rao BK, Jena P, Wang XB, Wang LS (1999) Chem Phys Lett 312:598–605

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision D.01, Gaussian Inc, Wallingford

  36. Dooley R, Milfeld K, Guiang C, Pamidighantam S, Allen GJ (2006) J Grid Comput 4:195–208

    Article  Google Scholar 

  37. Milfeld K, Guiang C, Pamidighantam S, Giuliani J (2005) Proceedings of the 2005 Linux Clusters: The HPC Revolution. Linux Clusters Institute, Urbana, IL

  38. Dooley R Allen G, Pamidighantam S (2005) Proceedings of the 13th annual Mardi Gras Conference Louisana State University, Baton Rouge, LA

  39. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  40. Perdew JP (1986) Phys Rev B 34:7406

    Article  Google Scholar 

  41. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  42. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–78

    Article  CAS  Google Scholar 

  44. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Bartlett RJ (1981) Ann Rev Phys Chem 32:359–402

    Article  CAS  Google Scholar 

  46. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  47. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  48. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Comput Mol Sci 2:242–253

    Article  CAS  Google Scholar 

  49. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M MOLPRO, version 2012.1, a package of ab initio programs

  50. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  51. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  52. Meloni G, Sheehan SM, Neumark DM (2005) J Chem Phys 122:074317-1-7

  53. Yao JY, Mei DJ, Bai L, Lin ZS, Yin WL, Fu PZ, Wu YC (2010) Inorg Chem 49:9212–9216

    Article  CAS  Google Scholar 

  54. Isaenko L, Yelisseyev A, Lobanov S, Titov A, Petrov V, Zondy JJ, Krinitsin P, Merkulov A, Vedenyapin V, Smirnova J (2003) Cryst Res Technol 38:379–387

    Article  CAS  Google Scholar 

  55. Barrow RF, Burton WG, Callomon JH (1970) J Chem Soc Faraday Trans 66:2685–2693

    Article  CAS  Google Scholar 

  56. Zhong MM, Kuang XY, Wang ZH, Shao P, Ding LP (2013) J Mol Model 19:263–274

    Article  CAS  Google Scholar 

  57. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  58. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.S. acknowledges support from the Mauritius Tertiary Education Commission (TEC). The authors also acknowledge facilities at the University of Mauritius and the University of Namibia. The authors would like to thank the anonymous reviewers for useful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnadurai Ramasami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 214 kb)

ESM 2

(DOCX 451 kb)

ESM 3

(DOCX 24 kb)

ESM 4

(DOCX 26 kb)

ESM 5

(DOCX 25 kb)

ESM 6

(DOCX 26 kb)

ESM 7

(DOCX 24 kb)

ESM 8

(DOCX 26 kb)

ESM 9

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeburrun, N., Archibong, E.F. & Ramasami, P. Mono and digallium selenide clusters as potential superhalogens. J Mol Model 21, 42 (2015). https://doi.org/10.1007/s00894-014-2555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2555-3

Keywords

Navigation