Skip to main content
Log in

Density functional study of molecular nitrogen adsorption on gold-copper and gold-silver binary clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed to investigate the adsorption behaviors of nitrogen molecule on small bimetallic AunCum and AunAgm clusters, with n + m ≤ 5. In all cases the N2 forms a linear or quasi-linear M-N-N structure (M = Au, Cu or Ag). The adsorption energies of N2 on pure metal clusters follow the order CunN2 > AunN2 > AgnN2, which is due to the weaker orbital interaction between silver and N2. N2 prefers to bind to a copper atom in AunCumN2 complexes and prefers to bind to a silver atom in AunAgmN2 complexes. The combination of Cu atoms into Aun clusters makes the cluster more reactive toward N2 while the combination of Ag atoms into Aun clusters makes the cluster less reactive toward N2. The electrostatic interaction is strengthened while the back-donation from metal to N2 is reduced in bimetallic cluster nitrides, as compared to the mono cluster nitrides. The N-N stretching frequencies are all red-shifted upon adsorption and the M-N stretching frequencies are highly correlated to the atoms to which the N is attached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ervin KM (2001) Metal-ligand interactions: gas-phase transition metal cluster carbonyls. Int Rev Phys Chem 20:127–164

    Article  CAS  Google Scholar 

  2. Zhang H, Zelmon DE, Deng L, Liu HK, Teo BK (2001) Optical limiting behavior of nanosized polyicosahedral gold-silver clusters based on third-order nonlinear optical effects. J Am Chem Soc 123:11300–11301

    Article  CAS  Google Scholar 

  3. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: origins of ductility of gold and gold-silver alloy formation. J Phys Chem B 107:9994–10005

    Article  CAS  Google Scholar 

  4. Wang HQ, Kuang XY, Li HF (2010) Density functional study of structural and electronic properties of bimetallic copper-gold clusters: comparison with pure and doped gold clusters. Phys Chem Chem Phys 12:5156–5165

    Article  CAS  Google Scholar 

  5. Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Aun (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115:569–576

    Article  CAS  Google Scholar 

  6. Kuang X, Wang X, Liu G (2011) Structural, electronic and magnetic properties of small gold clusters with a copper impurity. Trans Met Chem 36:643–652

    Article  CAS  Google Scholar 

  7. Jiang ZY, Lee KH, Li ST, Chu SY (2006) Structures and charge distributions of cationic and neutral Cun-1Ag clusters (n = 2-8). Phys Rev B 73:235423

    Article  Google Scholar 

  8. Lou XH, Gao H, Wang WZ, Xu C, Zhang H, Zhang ZJ (2010) A theoretical study of the atomic hydrogen binding on small AgnCum (n + m ≤ 5) clusters. J Mol Struct (Theochem) 959:75–79

    Article  CAS  Google Scholar 

  9. Zhao S, Lu WW, Ren YL, Wang JJ, Yin WP (2012) Density functional study of cationic and anionic AgmCun (m + n ≤ 5) clusters. Commun Theor Phys 57:452–458

    Article  CAS  Google Scholar 

  10. Joshi AM, Delgass WN, Thomson KT (2006) Analysis of O2 adsorption on binary-alloy clusters of gold: energetics and correlations. J Phys Chem B 110:23373–23387

    Article  CAS  Google Scholar 

  11. Liu X, Wang A, Wang X, Mou CY, Zhang T (2008) Au-Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun 27:3187–3189

    Article  Google Scholar 

  12. Wu DY, Ren B, Tian ZQ (2006) Binding interactions and Raman spectral properties of pyridine interacting with bimetallic silver-gold clusters. ChemPhysChem 7:619–628

    Article  CAS  Google Scholar 

  13. Zhao Y, Li Z, Yang J (2009) A density functional study on cationic AunCum + clusters and their monocarbonyls. Phys Chem Chem Phys 11:2329–2334

    Article  CAS  Google Scholar 

  14. Zhao S, Ren YL, Wang J, Yin WP (2010) Density functional study of hydrogen binding on gold and silver-gold clusters. J Phys Chem A 114:4917–4923

    Article  CAS  Google Scholar 

  15. Arve K, Adam J, Simakova O, Capek L, Eranen K, Murzin DY (2009) Selective catalytic reduction of NOx over nano-sized gold catalysts supported on alumina and titania and over bimetallic gold-silver catalysts supported on alumina. Top Catal 52:1762–1765

    Article  CAS  Google Scholar 

  16. Bin F, Song CL, Lv G, Song JO, Wu SH, Li XD (2014) Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts. Appl Catal B 150:532–543

    Article  Google Scholar 

  17. Kameoka S, Ukisu Y, Miyadera T (2000) Selective catalytic reduction of NOx with CH3OH, C2H5OH and C3H6 in the presence of O2 over Ag/Al2O3 catalyst: Role of surface nitrate species. Phys Chem Chem Phys 2:367–372

    Article  CAS  Google Scholar 

  18. Ueda A, Haruta M (1999) Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts. Gold Bull 32:3–11

    Article  CAS  Google Scholar 

  19. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  20. Özbek MO, Santen RAV (2013) The mechanism of ethylene epoxidation catalysis. Catal Lett 143:131–141

    Article  Google Scholar 

  21. Yang LJ, Zhou S, Ding T, Meng M (2014) Superior catalytic performance of non-stoichiometric solid solution Ce1-xCuxO2-delta supported copper catalysts used for CO preferential oxidation. Fuel Process Technol 124:155–164

    Article  CAS  Google Scholar 

  22. Maiti M, Sadhukhan D, Thakurta S, Zangrando E, Pilet G, Signorella S, Bellu S, Mitra S (2014) Catalytic efficacy of copper (II)- and cobalt (III)-Schiff base complexes in alkene epoxidation. Bull Chem Soc Jpn 87:724–732

    Article  CAS  Google Scholar 

  23. Ding X, Yang J, Hou JG, Zhu Q (2005) Theoretical study of molecular nitrogen adsorption on Au clusters. J Mol Struct (Theochem) 755:9–17

    Article  CAS  Google Scholar 

  24. Zhou J, Li ZH, Wang WN, Fan KN (2006) Density functional study of the interaction of carbon monoxide with small neutral and charged sliver clusters. J Phys Chem A 110:7167–7172

    Article  CAS  Google Scholar 

  25. Cao Z, Wang J, Zhu J, Wu W, Zhang Q (2002) Static polarizabilities of copper clusters monocarbons CunCO (n = 2-13) and selectivity of CO adsorption on Copper Clusters. J Phys Chem B 106:9649–9654

    Article  CAS  Google Scholar 

  26. Wu L, Senapati L, Nayak SK, Selloni A, Hajaligol M (2002) A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters. J Chem Phys 117:4010–4015

    Article  CAS  Google Scholar 

  27. Neumaier M, Weigend F, Hampe O, Kappes MM (2008) Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations. Faraday Discuss 138:393–406

    Article  CAS  Google Scholar 

  28. Neumaier M, Weigend F, Hampe O, Kappes MM (2006) Reactions of mixed silver-gold cluster cations AgmAun + (m + n = 4,5,6) with CO: radiative association kinetics and density functional theory computations. J Chem Phys 125:104308

    Article  Google Scholar 

  29. Joshi AM, Tucker MH, Delgass TKT (2006) CO adsorption on pure and binary-alloy gold clusters: a quantum chemical study. J Chem Phys 125:194707

    Article  Google Scholar 

  30. Acioli PH, Burkland S, Srinivas S (2012) An exploration of the potential energy surface of the seven atom silver cluster and a carbon monoxide ligand. Eur Phys J D 66:215

    Article  Google Scholar 

  31. 31 Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, Gaussian Inc, Pittsburgh, PA

  32. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, Atoms, molecules, solids, and surfaces–Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  33. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Energy–adjusted abinitio pseudopotentials for the 2nd and 3rd row transition–elements. Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  34. Zhao S, Lu WW, Yun-Lai R, Yun-Li R, Wang J, Yin WP (2012) Density functional study of NOx binding on small AunCum (n + m ≤ 5) clusters. Comput Theor Chem 993:1039–1048

    Article  Google Scholar 

  35. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  36. Dapprich S, Frenking G (1995) Investigation of donor-acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99:9352–9362

    Article  CAS  Google Scholar 

  37. Frenking G, Fröhlich N (2000) The nature of bonding in transition-metal compounds. Chem Rev 100:717–774

    Article  CAS  Google Scholar 

  38. Zhao S, Lu WW, Yun-Lai R, Yun-Li R, Wang J, Yin WP (2012) Density functional study of NOx binding on small AunCum (n + m ≤ 5) clusters. Comput Theor Chem 993:90–96

    Article  CAS  Google Scholar 

  39. Sadek MM, Wang L (2006) Effect of adsorption site, size and composition of Pt/Au bimetallic clusters on the CO frequency: a density functional theory theory. J Phys Chem A 110:14036–14042

    Article  CAS  Google Scholar 

  40. Fernandez EM, Soler JM, Garzon IL, Balbas LC (2004) Trends in the structure and bonding of noble metal clusters. Phys Rev B 70:165403

    Article  Google Scholar 

  41. Wesendrup R, Hunt T, Schwerdtfeger P (2000) Relativistic coupled cluster calculations for neutral and singly charged Au3 clusters. J Chem Phys 112:9356–9362

    Article  CAS  Google Scholar 

  42. Autschbach J, Siekierski S, Seth M, Schwerdtfeger P, Schwarz WHE (2002) Dependence of relativistic effects on electronic configuration in the neutral atoms of d- and f-block elements. J Comput Chem 23:804–813

    Article  CAS  Google Scholar 

  43. Zhang X, Ding X, Fu Q, Yang J (2008) Theoretical study of molecular nitrogen adsorption on Wn clusters. J Mol Struct (Theochem) 867:17–21

    Article  CAS  Google Scholar 

  44. Lei XL (2010) Theoretical study of small Mo clusters and molecular nitrogen adsorption on Mo clusters. Chin Phys B 19:107103

    Article  Google Scholar 

  45. 45 Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Reinhold, New York

  46. Davidson ER, Kunze KL, Machado FB, Chakravorty S (1993) The transition-metal carbonyl bond. Acc Chem Res 26:628–635

    Article  CAS  Google Scholar 

  47. Bagus PS, Hermann K, Bauschlicher CW (1984) On the nature of the bonding of the lone pair ligands to small metal-clusters. Ber Bunsen-Ges Phys Chem 88:302–303

    Article  CAS  Google Scholar 

  48. Koutecky J, Pacchioni G, Fantucci P (1985) Sigma-Pi-contributions in metal-CO bond: a theoretical-study of RhCO and PdCO. Chem Phys 99:87–101

    Article  CAS  Google Scholar 

  49. Baerends EJ, Rozendaal A (1986) In: Veillard A (ed) Quantum chemistry: the challenge of transition metals and coordination chemistry. Reidel, Dordrecht

  50. Muller W, Bagus PS (1985) Vibrations of CO chemisorbed on metal-surfaces: cluster model studies. J Vac Sci Technol 3:1623–1626

    Article  Google Scholar 

  51. Boys SF, Bernadi F (1970) Calculation of small molecular interactions by differences of separate total energies-some procedures with reduced errors. Mol Phys 10:553–556

    Article  Google Scholar 

  52. 52 Mogi K, Sakai Y, Sonoda T, Xu Q, Souma Y (2003) Geometries and electronic structures of group 10 and 11 metal carbonys cations, [M(CO)n]x+ (Mx+ = Ni2+, Pd2+, Pt2+, Cu+, Ag+, Au+; n = 1-4). J Phys Chem A 107:3812–3821

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21,133,009 and No. 21,002,023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianJi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Tian, X., Liu, J. et al. Density functional study of molecular nitrogen adsorption on gold-copper and gold-silver binary clusters. J Mol Model 20, 2467 (2014). https://doi.org/10.1007/s00894-014-2467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2467-2

Keywords

Navigation