Skip to main content
Log in

Reaction of Np atom with H2O in the gas phase: reaction mechanisms and ab initio molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The gas-phase reaction of an Np atom with H2O was investigated using density functional theory and ab initio molecular dynamics. The reaction mechanisms and the corresponding potential energy profiles for different possible spin states were analyzed. Three reaction channels were found in the mechanism study: the isomerization channel, the H2 elimination channel, and the H atom elimination channel. The latter two were observed in the dynamics simulation. It was found that the branching ratio of the title reaction depends on the initial kinetic energy along the transition vector. Product energy distributions for the reaction were evaluated by performing direct classical trajectory calculations on the lowest sextet potential energy surface. The results indicate that most of the available energy appears as the translational energy of the products. The overall results indicate that the H2 elimination channel with low kinetic energy is thermodynamically favored but competes with the H atom elimination channel with higher kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5
Fig. 6a–d
Fig. 7a–d

Similar content being viewed by others

References

  1. Michelini MC, Russo N, Sicilia E (2006) Angew Chem Int Ed 45:1095–1099

    Article  CAS  Google Scholar 

  2. Michelini MC, Russo N, Sicilia E (2007) J Am Chem Soc 129:4229–4239

    Article  CAS  Google Scholar 

  3. Alikhani ME, Michelini MC, Russo N, Sicilia E (2008) J Phys Chem A 112:12966–12974

    Article  CAS  Google Scholar 

  4. Mazzone G, Michelini MC, Russo N, Sicilia E (2008) Inorg Chem 47:2083–2088

    Article  CAS  Google Scholar 

  5. De Almeida KJ, Duarte HA (2009) Organometallics 28:3203–3211

    Article  Google Scholar 

  6. De Almeida KJ, Duarte HA (2010) Organometallics 29:3735–3745

    Article  Google Scholar 

  7. Zhou J, Schlegel HB (2010) J Phys Chem A 114:8613–8617

    Article  CAS  Google Scholar 

  8. Santos M, Marҫalo J, Pires de Matos A, Gibson JK, Haire RG (2002) J Phys Chem A 106:7190–7194

    Article  CAS  Google Scholar 

  9. Jackson GP, King FL, Goeringer DE, Duckworth DC (2002) J Phys Chem A 106:7788–7794

    Article  CAS  Google Scholar 

  10. Liang BY, Andrews L, Li J, Bursten BE (2002) J Am Chem Soc 124:6723–6733

    Article  CAS  Google Scholar 

  11. Gibson JK, Haire RG, Santos M, Marҫalo J, Pires de Matos A (2005) J Phys Chem A 109:2768–2781

    Article  CAS  Google Scholar 

  12. Liang BY, Hunt RD, Kushto GP, Andrews L, Li J, Bursten BE (2005) Inorg Chem 44:2159–2168

    Article  CAS  Google Scholar 

  13. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York

  14. Shamov GA, Schreckenbach G, Vo TN (2007) Chem Eur J 13:4932–4947

    Article  CAS  Google Scholar 

  15. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Adamo C, Barone VT (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  20. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  21. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  22. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  23. Boese AD, Jan MLM (2004) J Chem Phys 121:3405–3416

    Article  CAS  Google Scholar 

  24. Kuchle W, Dolg M, Stoll H, Preuss H (1994) J Chem Phys 100:7535–7542

    Article  Google Scholar 

  25. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian 09, revision A.02. Gaussian, Inc., Wallingford

  27. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  28. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  29. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  31. Evan L, Snijders JG, Bearends EJ (1996) J Chem Phys 105:6505–6516

    Article  Google Scholar 

  32. Evan L, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Article  Google Scholar 

  33. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Gisbergen SJA, Snijders JG, Ziegler T, Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  34. Van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156

  35. Peslherbe GH, Wang H, Hase WL (1999) Adv Chem Phys 105:171–201

    CAS  Google Scholar 

  36. Bakken V, Millam JM, Schlegel HB (1999) J Chem Phys 111:8773–8777

    Article  CAS  Google Scholar 

  37. Millam JM, Bakken V, Chen W, Hase WL, Schlegel HB (1999) J Chem Phys 111:3800–3805

    Article  CAS  Google Scholar 

  38. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  39. Lyon JT, Andews L, Malmqvist P, Roos BO, Yang T, Bursten BE (2007) Inorg Chem 46:4917–4925

    Article  CAS  Google Scholar 

  40. Gagliardi L, Roos BO, Malmqvist P-Å, Dyke JM (2001) J Phys Chem A 105:10602–10606

    Article  CAS  Google Scholar 

  41. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  42. Martínez-Núñez E, Fernández-Ramos A, Cordeiro MNDS, Vázquez SA, Aoiz FJ, Bañares L (2003) J Chem Phys 119:10618–10625

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Xiaofeng Tian and Dr. Sobereva for many helpful discussions. Computer time made available by the Center of High Performance Computing at the Physics Discipline of Sichuan University is gratefully acknowledged. We would like to thank the reviewers for their valuable suggestions for improving our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Niu, W., Gao, T. et al. Reaction of Np atom with H2O in the gas phase: reaction mechanisms and ab initio molecular dynamics study. J Mol Model 20, 2466 (2014). https://doi.org/10.1007/s00894-014-2466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2466-3

Keywords

Navigation