Skip to main content
Log in

Bonding analysis of the donor–acceptor sandwiches CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η 5-C5H5)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nature of E–M bonds in CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η 5-C5H5) donor–acceptor sandwiches was studied using the atoms in molecules (AIM) theory, electron localization function (ELF), energy decomposition analysis (EDA), and natural bond orbital analysis (NBO) methods. Both topological and orbital analysis show that the E atom determines the bond strength of the E–M bonds, while the M atom has little influence on it. E–M bond strength decreases in the order E = B, Al, and Ga. The EDA analysis shows that the electrostatic character decreases following the sequence E = B > Al > Ga. Not only the s orbital, but also the p orbital of the E/M atom participates in formation of the E–M bond. The interactions of E and M with Cp are different. The M–Cp interaction is purely electrostatic while the E–Cp interaction has a partly covalent character.

Left Three-dimensional (3D) cross section electron localization function through the molecules of CpE-MCp (E = B, Al, Ga; M = Li, Na, K). Blue Core C(E/M) basins, red valence V(E, M) basins, green bonding V(C, C) basin. Right Molecular graph of CpE-MCp

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kealy TJ, Pauson P (1951) Nature 168:1039–1040

    Article  CAS  Google Scholar 

  2. Jutzi P, Burford N (1998) Metallocenes. Wiley, New York

    Google Scholar 

  3. Scheirs J, Kaminsky W (2000) Metallocene-based polyolefins, vols 1 and 2. Wiley, Chichester, UK

  4. Togni A, Hayashi T (1995) Ferrocenes. Verlach Chemie, Weinheim

    Google Scholar 

  5. Jones WD (2005) Inorg Chem 44:4475–4484

    Article  Google Scholar 

  6. Jansen G (2000) International Conference on Chemical Bonding: State of the Art in Conceptual Quantum Chemistry. La Colle-sur-Loup: France

  7. Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Science 305:1136–1138

    Article  CAS  Google Scholar 

  8. Xie Y, Schaefer HF III, King RB (2005) J Am Chem Soc 127:2818–2819

    Article  CAS  Google Scholar 

  9. Xie Y, Schaefer HF III, Jemmis ED (2005) Chem Phys Lett 402:414–421

    Article  CAS  Google Scholar 

  10. Xie ZZ, Fang WH (2005) Chem Phys Lett 404:212–216

    Article  CAS  Google Scholar 

  11. Grirrane A, Resa I, Rodriguez A, Carmona E, Alvarez E, Gutierrez-Puebla E, Monge A, Galindo A, del Rio D, Andersen RA (2007) J Am Chem Soc 129:693–703

    Article  CAS  Google Scholar 

  12. Li X, Huo S, Sun Z, Zheng SJ, Meng LP (2013) Organometallics 32:1060–1066

    Article  CAS  Google Scholar 

  13. Timoshkin AY, Schaefer HF III (2005) Organometallics 24:3343–3345

    Article  CAS  Google Scholar 

  14. Gamer MT, Roesky PW, Konchenko SN, Nava P, Ahlriches R (2006) Angew Chem Int Ed 45:4447–4451

    Article  CAS  Google Scholar 

  15. Merino G, Beltrán HI, Vela A (2006) Inorg Chem 45(3):1091–1095

    Article  CAS  Google Scholar 

  16. He N, Xie HB, Ding YH (2007) Orgnometallics 26:6839–6843

    Article  CAS  Google Scholar 

  17. Pauling L, Kamb B (1986) Proc Natl Acad Sci USA 83:3569–3571

    Article  CAS  Google Scholar 

  18. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  19. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. From solid state to DNA and drug design. Wiley, Weinheim

    Book  Google Scholar 

  20. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  21. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  22. Silvi B (2002) J Mol Struct 614:3–10

    Article  CAS  Google Scholar 

  23. Savin A, Silvi B, Coionna F (1996) Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  24. Morokuma K (1971) J Chem Phys 55:1236–1245

    Article  CAS  Google Scholar 

  25. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  26. Coriani S, Haaland A, Helgaker T, Jørgensen P (2006) ChemPhysChem 7:245–249

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, Revision D. 02, Gaussian, Inc., Wallingford, CT

  30. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  31. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PR (1983) J Comput Chem 4

  32. Popelier P (2000) Atoms in molecules—an introduction. UMIST, Manchester

    Google Scholar 

  33. Biegler-König F(2000), AIM 2000, Version 1.0; University of Applied Science: Bielefeld, Germany

  34. Keith TA (2010), AIMAll, version 10.05.04, see http://aim.tkgristmill.com/

  35. Feixas F, Matito E, Duran M, Solà M, Silvi B (2010) J Chem Theory Comput 6:2736–2742

    Article  CAS  Google Scholar 

  36. Noury S, Krokidis X, Fuster F, Silvi B (1999) J Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  37. Matito E, Silvi B, Duran M, Sola M (2006) J Chem Phys 125:24301

    Article  Google Scholar 

  38. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  39. ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available from: http://www.scm.com

  40. van Lenthe E, Baerends EJ, Snijers JG (1994) J Chem Phys 101:9783

    Article  Google Scholar 

  41. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  42. Weinhold F (1997) J Mol Struct THEOCHEM 398:181–197

    Article  Google Scholar 

  43. Kar T, Ángyán JG, Sannigrahi AB (2000) J Phys Chem A 104:9953–9963

    Article  CAS  Google Scholar 

  44. Firme CL, Antunes OAC, Esteves PM (2009) Chem Phys Lett 468:129–133

    Article  CAS  Google Scholar 

  45. Bader RFW, Matta CF (2001) Inorg Chem 40:5603

    Article  CAS  Google Scholar 

  46. Wang YG, Matta, C, Werstiuk, NH(2003) J Comp Chem 1720–1729

  47. Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366

    Article  CAS  Google Scholar 

  48. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  49. Noury S, Colonna F, Savin A, Silvi B (1998) J Mol Struct 450:59–68

    Article  CAS  Google Scholar 

  50. Llusar R, Beltrán A, Andrés J, Fuster F, Silvi B (2001) J Phys Chem A 105:9460–9466

    Article  CAS  Google Scholar 

  51. Glendening ED, Landis CR, Weinhold F (2012) WIRES Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to International Science Editing for editing this paper. This work was supported by the National Natural Science Foundation of China (Contract NO. 21102033, 21372062, 21171047, 21373075, 21371045), the Education Department Foundation of Hebei Province (NO. ZD20131053, ZH2012106). The authors would also like to thank Professor Qingzhong Li for providing the ADF2008.1 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, S., Meng, D., Zhang, X. et al. Bonding analysis of the donor–acceptor sandwiches CpE–MCp (E = B, Al, Ga; M = Li, Na, K; Cp = η 5-C5H5). J Mol Model 20, 2455 (2014). https://doi.org/10.1007/s00894-014-2455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2455-6

Keywords

Navigation