Skip to main content
Log in

Theoretical study of Cr–Cr bonding in [Cp*2Cr2(CO)2(µ-PMe2)2], [Cp*2Cr2(CO)4(µ-H) (µ-PMe2)], and [Cp*3Cr3(CO)3(μ-S) (μ-PMe2)] complexes by QTAIM theory

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Chromium–chromium and chromium–ligand bonding interactions existing in the [Cp*2Cr2(CO)2(μ-PMe2)2], [Cp*2Cr2(CO)4(μ-H) (μ-PMe2)], and [Cp*3Cr3(CO)3(μ-S) (μ-PMe2)] complexes are studied at DFT level of theory. Several local and integral topological parameters of the electron density such as electron density ρ(b), Laplacian ∇2ρ(b), local energy density H(b), local kinetic energy density G(b), potential energy density V(b), ε(b), and bond localization index (A, B) were evaluated according to QTAIM (quantum theory of atoms in a molecule). The calculated topological parameters are consistent with the relevant transition metal complexes in the literature. The computed data allow comparisons between the topological properties of related but different atom–atom interactions, such as other ligand-bridged Cr–Cr interactions and H-bridged ligand interactions versus S and P ligands. The QTAIM results confirm that the metal atoms bridged by two phosphorus atoms in binuclear complex1 are connected through a localized Cr–Cr bond that implicates little electron density (0.040). In contrast, such bonding was not found in binuclear complexes 2 (bridged by H and P) and trinuclear complex 3 (bridged by S and P). A multicenter 4c–5e, 4c–3e, and 4c–4e interactions are proposed to exist in the bridged parts, Cr(1)–P(1)–Cr(2)–P(2) in complex 1, Cr(1)–H–Cr(2)–P in complex 2, and Cr3–S in complex 3, respectively. Finally, the delocalization indices δ(Cr····O) calculated for the Cr–CO bonds in the three compounds confirm the presence of significant CO to Cr π-back-donation except for Cr(2)–O(2) and Cr(3)–O(1) bonds in complex 3, indicating that there is no π-back-donation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takeuchi R (1999) Rhodium and iridium complex-catalyzed highly selective reactions. J Synth Org Chem Jpn 57(7):608–618

    Article  CAS  Google Scholar 

  2. Hogarth G, Kabir SE, Nordlander E (2010) Cluster chemistry in the Noughties: new developments and their relationship to nanoparticles. Dalton Trans 39(27):6153–6174

    Article  CAS  PubMed  Google Scholar 

  3. Muetterties E (1977) Molecular metal clusters: cluster chemistry may provide valuable insights to chemisorption and catalysis on surfaces. Science 196(4292):839–848

    Article  CAS  PubMed  Google Scholar 

  4. Guzman-Jimenez IY, van Hal JW, Whitmire KH (2003) Metal cluster catalysis: a kinetic and mechanistic study of the carbonylation of methanol to give methyl formate as catalyzed by [Et4N] 2 [Fe3 (CO) 9E](E= S, Se, Te). Organometallics 22(9):1914–1922

    Article  CAS  Google Scholar 

  5. Böhme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed 44(16):2336–2354

    Article  Google Scholar 

  6. Moberg V et al (2006) Synthesis, characterization and reactivity of tetranuclear ruthenium hydrido clusters containing chiral phosphine ligands. Dalton Trans 1:279–288

    Article  Google Scholar 

  7. Nombel P, Lugan N, Donnadieu B, Lavigne G (1999) Cluster-mediated conversion of diphenylacetylene into α-phenylcinnamaldehyde. construction of a catalytic hydroformylation cycle based on isolated intermediates. Organometallics 18(2):187–196

    Article  CAS  Google Scholar 

  8. Liu K, Shi W, Cheng P (2015) Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord Chem Rev 289:74–122

    Article  Google Scholar 

  9. Craig GA, Murrie M (2015) 3d single-ion magnets. Chem Soc Rev 44(8):2135–2147

    Article  CAS  PubMed  Google Scholar 

  10. Powers IG, Uyeda C (2017) Metal–metal bonds in catalysis. ACS Catal 7(2):936–958

    Article  CAS  Google Scholar 

  11. Rej S, Tsurugi H, Mashima K (2018) Multiply-bonded dinuclear complexes of early-transition metals as minimum entities of metal cluster catalysts. Coord Chem Rev 355:223–239

    Article  CAS  Google Scholar 

  12. Chai J et al (2005) Synthesis and reaction of [{HC (CMeNAr) 2} Mn] 2 (Ar= 2, 6–i Pr2C6H3): the complex containing three-coordinate manganese (I) with a Mn− Mn bond exhibiting unusual magnetic properties and electronic structure. J Am Chem Soc 127(25):9201–9206

    Article  CAS  PubMed  Google Scholar 

  13. Huang G-T, Yu J-SK (2019) Analyses on molecular properties of the diamidinate CrI–CrI complex by multireference and DFT approaches. J Phys Chem A 123(36):7803–7813

    Article  CAS  PubMed  Google Scholar 

  14. Dong Z-Q, Yang J-H, Liu B (2021) Chromous carbonates containing a square-grid layer of Cr2 (CO3) 4 n 4n− based on a dichromium (ii, ii) paddlewheel core. Dalton Trans 50(7):2387–2392

    Article  CAS  PubMed  Google Scholar 

  15. Ferrante F, Gagliardi L, Bursten BE, Sattelberger AP (2005) Multiconfigurational theoretical study of the octamethyldimetalates of Cr (II), Mo (II), W (II), and Re (III): revisiting the correlation between the M–M bond length and the δ→ δ* transition energy. Inorg Chem 44(23):8476–8480

    Article  CAS  PubMed  Google Scholar 

  16. Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) A quantum chemical study of the quintuple bond between two chromium centers in [PhCrCrPh]: trans-Bent versus linear geometry. Angew Chem 118(23):3888–3891

    Article  Google Scholar 

  17. Bondybey V, English J (1983) Electronic structure and vibrational frequency of Cr2. Chem Phys Lett 94(5):443–447

    Article  CAS  Google Scholar 

  18. Cotton FA, Hillard EA, Murillo CA, Zhou H-C (2000) After 155 years, a crystalline chromium carboxylate with a supershort Cr–Cr bond. J Am Chem Soc 122(2):416–417

    Article  CAS  Google Scholar 

  19. Cotton FA, Daniels LM, Murillo CA, Schooler P (2000) Chromium (II) complexes bearing 2-substituted N,N′-diarylformamidinate ligands. J Chem Soc Dalton Trans 13:2007–2012

    Article  Google Scholar 

  20. Bader RF (1990) Atom in molecules a quantum theory (AIM)

  21. Overgaard J, Clausen HF, Platts JA, Iversen BB (2008) Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc 130(12):3834–3843

    Article  CAS  PubMed  Google Scholar 

  22. Farrugia LJ, Evans C, Tegel M (2006) Chemical bonds without “chemical bonding”? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J Phys Chem A 110(25):7952–7961

    Article  CAS  PubMed  Google Scholar 

  23. Farrugia LJ, Evans C, Lentz D, Roemer M (2009) The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (η5-C5H5) Mn (CO)3,(η6-C6H6) Cr (CO)3, and (E)-{(η5-C5H4) CF=CF (η5-C5H4)}(η5-C5H5) 2Fe2. J Am Chem Soc 131(3):1251–1268

    Article  CAS  PubMed  Google Scholar 

  24. Gervasio G, Marabello D, Bianchi R, Forni A (2010) Detection of weak intramolecular interactions in Ru3 (CO) 12 by topological analysis of charge density distributions. J Phys Chem A 114(34):9368–9373

    Article  CAS  PubMed  Google Scholar 

  25. Macchi P, Sironi A (2003) Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord Chem Rev 238:383–412

    Article  Google Scholar 

  26. Bo C, Sarasa JP, Poblet JM (1993) Laplacian of charge density for binuclear complexes: terminal vs bridging carbonyls. J Phys Chem 97(24):6362–6366

    Article  CAS  Google Scholar 

  27. Low AA, Kunze KL, MacDougall P, Hall MB (1991) Nature of metal-metal interactions in systems with bridging ligands. 1. Electronic structure and bonding in octacarbonyldicobalt. Inorg Chem 30(5):1079–1086

    Article  CAS  Google Scholar 

  28. Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2 (CO) 10: metal− metal and metal− Ligand bond characterization. Inorg Chem 39(11):2360–2366

    Article  CAS  PubMed  Google Scholar 

  29. Gatti C, Lasi D (2007) Source function description of metal–metal bonding in d-block organometallic compounds. Faraday Discuss 135:55–78

    Article  CAS  PubMed  Google Scholar 

  30. Gervasio G, Bianchi R, Marabello D (2005) Unexpected intramolecular interactions in Ru3 (CO) 12: an experimental charge density study at 120 K. Chem Phys Lett 407(1–3):18–22

    Article  CAS  Google Scholar 

  31. Goh LY, Weng Z, Leong WK, Vittal JJ, Haiduc I (2002) An organometallic radical route to bis (phosphido)-and hydrido− phosphido-bridged metal− metal-bonded complexes of cyclopentadienylchromium via desulfurization of thiophosphinito ligands. Organometallics 21(24):5287–5291

    Article  CAS  Google Scholar 

  32. Caricato M, Frisch MJ, Hiscocks J, Frisch MJ (2009) Gaussian 09: IOps reference. Gaussian Wallingford, CT, USA

  33. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  34. Fuentealba P, Preuss H, Stoll H, Von Szentpály L (1982) A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chem Phys Lett 89(5):418–422

    Article  CAS  Google Scholar 

  35. Höllwarth A et al (1993) A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett 208(3–4):237–240

    Article  Google Scholar 

  36. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  37. Biegler-König F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23(15):1489–1494

    Article  PubMed  Google Scholar 

  38. Huzinaga S, Klobukowski M (1993) Well-tempered Gaussian basis sets for the calculation of matrix Hartree–Fock wave functions. Chem Phys Lett 212(3–4):260–264

    Article  CAS  Google Scholar 

  39. Gholivand K, Mahzouni HR, Esrafili MD (2010) How do phosphoramides compete with phosphine oxides in lanthanide complexation? Structural, electronic and energy aspects at ab initio and DFT levels. Theoret Chem Acc 127:539–550

    Article  CAS  Google Scholar 

  40. Firme CL, Pontes DDL, Antunes OA (2010) Topological study of bis (cyclopentadienyl) titanium and bent titanocenes. Chem Phys Lett 499(4–6):193–198

  41. Pocha R, Löhnert C, Johrendt D (2007) The metal-rich palladium chalcogenides Pd2MCh2 (M= Fe Co, Ni; Ch= Se, Te): crystal structure and topology of the electron density. J Solid State Chem 180(1):191–197

    Article  CAS  Google Scholar 

  42. Gholivand K, Mahzouni HR, Esrafili MD (2012) Structure, bonding, electronic and energy aspects of a new family of early lanthanide (La, Ce and Nd) complexes with phosphoric triamides: Insights from experimental and DFT studies. Dalton Trans 41(5):1597–1608

    Article  CAS  PubMed  Google Scholar 

  43. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161

    Article  CAS  Google Scholar 

  44. Bader RF (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102(37):7314–7323

    Article  CAS  Google Scholar 

  45. Esrafili MD, Rezaei S, Eftekhari E (2012) A theoretical investigation on geometry and electronic structure of small FemSn nanoclusters (1⩽ m, n⩽ 4). Comput Theor Chem 1001:1–6

    Article  CAS  Google Scholar 

  46. Stalke D (2012) Electron density and chemical bonding II: theoretical charge density studies. Springer

  47. Van der Maelen JF, García-Granda S, Cabeza JA (2011) Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters:[Os3 (CO)12],[Os3 (μ-H)2 (CO)10],[Os3 (μ-H)(μ-OH)(CO)10], and [Os3 (μ-H)(μ-Cl)(CO)10]. Comput Theor Chem 968(1–3):55–63

    Article  Google Scholar 

  48. Van der Maelen JF, Cabeza JA (2016) A topological analysis of the bonding in [M2 (CO)10] and [M3 (μ-H)3 (CO)12] complexes (M = Mn, Tc, Re). Theoret Chem Acc 135:1–11

    Google Scholar 

  49. Cabeza JA, Van der Maelen JF, Garcia-Granda S (2009) Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3 (μ-H) 2 (μ3-MeImCH)(CO) 9](Me2Im= 1, 3-dimethylimidazol-2-ylidene). Organometallics 28(13):3666–3672

    Article  CAS  Google Scholar 

  50. Niskanen M, Hirva P, Haukka M (2009) Computational DFT study of ruthenium tetracarbonyl polymer. J Chem Theory Comput 5(4):1084–1090

    Article  CAS  PubMed  Google Scholar 

  51. Macchi P, Garlaschelli L, Sironi A (2002) Electron density of semi-bridging carbonyls. Metamorphosis of CO ligands observed via experimental and theoretical investigations on [FeCo (CO)8]. J Am Chem Soc 124(47):14173–14184

    Article  CAS  PubMed  Google Scholar 

  52. Van der Maelen JF et al (2007) Experimental and theoretical characterization of the Zn–Zn bond in [Zn25-C5Me5)2]. Acta Crystallogr B 63(6):862–868

    Article  PubMed  Google Scholar 

  53. Matta CF, Boyd RJ (2007) An introduction to the quantum theory of atoms in molecules. The quantum theory of atoms in molecules: from solid state to DNA and drug design

  54. Gatti C (2005) Chemical bonding in crystals: new directions. Zeitschrift für Kristallographie-Crystalline Mater 220(5–6):399–457

  55. Maelen JF, García-Granda S, Cabeza JA (2011) Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters:[Os3 (CO)12], [Os3 (μ-H)2 (CO)10], [Os3 (μ-H)(μ-OH)(CO)10], and [Os3 (μ-H)(μ-Cl)(CO) 10]

  56. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem, Int Ed Engl 23(8):627–628

    Article  Google Scholar 

  57. Bianchi R, Gervasio G, Marabello D (2001) An experimental evidence of a metal−metal bond in μ-carbonylhexacarbonyl [μ-(5-oxofuran-2 (5H)-ylidene-κC, κC)]-dicobalt (Co− Co)[Co2 (CO)6 (μ-CO)(μ-C4O2H2)]. Helv Chim Acta 84(3):722–734

    Article  CAS  Google Scholar 

  58. Low AA, Hall MB (1993) Nature of metal-metal interactions in systems with bridging ligands. 2. Electronic and molecular structure of the cyclopentadienylnitrosylcobalt dimer and related molecules. Inorg Chem 32(18):3880–3889

    Article  CAS  Google Scholar 

  59. Uhl W, Melle S, Frenking G, Hartmann M (2001) Reaction of Ni2Cp2 (μ-CO)2 with the Alkylgallium (I) and Alkylindium (I) compounds E4 [C (SiMe3)3]4 (E= Ga, In). Insertion of E−R Groups into the Ni−Ni bond versus replacement of CO by the Isolobal E−R ligands. Inorg Chem 40(4):750–755

    Article  CAS  PubMed  Google Scholar 

  60. Foroutan-Nejad C, Vícha J, Marek R, Patzschke M, Straka M (2015) Unwilling U–U bonding in U2@C80: cage-driven metal–metal bonds in di-uranium fullerenes. Phys Chem Chem Phys 17(37):24182–24192

    Article  CAS  PubMed  Google Scholar 

  61. Farrugia LJ, Evans C, Senn HM, Hanninen MM, Sillanpaa R (2012) QTAIM view of metal–metal bonding in di-and trinuclear disulfido carbonyl clusters. Organometallics 31(7):2559–2570

    Article  CAS  Google Scholar 

  62. Stash AI, Tanaka K, Shiozawa K, Makino H, Tsirelson VG (2005) Atomic interactions in ethylenebis (1-indenyl) zirconium dichloride as derived by experimental electron density analysis. Acta Crystallogr B 61(4):418–428

    Article  PubMed  Google Scholar 

  63. Pillet S, Wu G, Kulsomphob V, Harvey BG, Ernst RD, Coppens P (2003) Investigation of Zr−C, Zr−N, and potential agostic interactions in an organozirconium complex by experimental electron density analysis. J Am Chem Soc 125(7):1937–1949

    Article  CAS  PubMed  Google Scholar 

  64. Philpott MR, Kawazoe Y (2006) The electronic structure of the dizincocene core. Chem Phys 327(2–3):283–290

    Article  CAS  Google Scholar 

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

Muhsen Abood Muhsen Al-Ibadi designed the research project, supervised the work, and revised and edited the manuscript and Noorhan Ali Hamza carried out the calculations and wrote the first draft of the manuscript. All authors contributed to data interpretation and discussion of the results.

Corresponding author

Correspondence to Noorhan Ali Hamza.

Ethics declarations

Competing interests

There are no conflicts to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, N.A., Al-Ibadi, M.A.M. Theoretical study of Cr–Cr bonding in [Cp*2Cr2(CO)2(µ-PMe2)2], [Cp*2Cr2(CO)4(µ-H) (µ-PMe2)], and [Cp*3Cr3(CO)3(μ-S) (μ-PMe2)] complexes by QTAIM theory. Transit Met Chem 49, 27–38 (2024). https://doi.org/10.1007/s11243-023-00559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00559-2

Navigation