Skip to main content

Advertisement

Log in

Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant bimetallic catalysts to replace platinum. Here, we present a first-principles study of ORR on Ag12Cu cluster in alkaline environment. The adsorptions of O2, OOH, and OH on Cu-doped Ag13 are stronger than on Ag13. The d-band centers of adsorption sites show the Cu-doping makes d-electrons transferred to higher energy state, and improves O2 dissociation. ORR processes on Ag12Cu and Ag13 indicate Cu-doping can strongly promote ORR, and ORR process can be better preformed on Ag12Cu than on Ag13. For four-electron transfer, the effective reversible potential is 0.401 V/RHE on Ag12Cu in alkaline medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  2. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  3. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602:L89–L118

    Article  CAS  Google Scholar 

  4. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvis L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  5. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  6. Abad A, Concepcion P, Corma A, Garcia H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem 117:4134–4137

    Article  Google Scholar 

  7. Christensen CH, Jøgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with Air in the presence of a heterogeneous gold catalyst. Angew Chem 118:4764–4767

    Article  Google Scholar 

  8. Jirkovský JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) Single atom hot-spots at Au—Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc 133:19432–19441

    Article  Google Scholar 

  9. Molina LM, Hammer B (2005) The activity of the tetrahedral Au20 cluster: charging and impurity effects. J Catal 233:399–404

    Article  CAS  Google Scholar 

  10. Gao Y, Shao N, Bulusu S, Zeng XC (2008) Effective CO oxidation on endohedral gold-cage nanoclusters. J Phys Chem C 112:8234–8238

    Article  CAS  Google Scholar 

  11. Price SWT, Speed JD, Kannan P, Russell AE (2011) Exploring the first steps in core–shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles. J Am Chem Soc 133:19448–19458

    Article  CAS  Google Scholar 

  12. Li HJ, Ho JJ (2012) Theoretical calculations on the oxidation of CO on Au55, Ag13Au42, Au13Ag42, and Ag55 clusters of nanometer size. J Phys Chem C 116:13196–13201

    Article  CAS  Google Scholar 

  13. Molayem M, Grigoryan VG, Springborg M (2011) Global minimum structures and magic clusters of CumAgn nanoalloys. J Phys Chem C 115:22148–22162

    Article  CAS  Google Scholar 

  14. Li WJ, Wang AQ, Liu XY, Zhang T (2012) Silica-supported Au–Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols. Appl Catal A 433–434:146–151

    Article  Google Scholar 

  15. Quaino P, Luque NB, Nazmutdinov R, Santos E, Schmickler W (2012) Why is gold such a good catalyst for oxygen reduction in alkaline media. Angew Chem Int Ed 51:12997–13000

    Article  CAS  Google Scholar 

  16. Morais RF, Sautet P, Loffred D, Franco AA (2011) A multi-scale modeling methodology to predict electrochemical observables from ab initio data: application to the ORR in a Pt(111)-based PEMFC. Electrochim Acta 56(28):10842–10856

    Article  Google Scholar 

  17. Goddard W III, Merionov B, Vanduin A, Jacob T, Blanco M, Molinero V, Jang SS, Jang YH (2006) Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. Mol Simul 32(3–4):251–268

    Article  CAS  Google Scholar 

  18. Bond GC, Thomson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319–388

    Article  CAS  Google Scholar 

  19. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  CAS  Google Scholar 

  20. Hammer B (2006) Special sites at noble and late transition metal catalysts. Top Catal 37:3–16

    Article  CAS  Google Scholar 

  21. Zhong WH, Liu YX, Zhang DJ (2012) Theoretical study of methanol oxidation on the PtAu(111) bimetallic surface: CO pathway vs non-CO pathway. J Phys Chem C 116:2994–3000

    Article  CAS  Google Scholar 

  22. Kang YR, Chen FY (2013) Synthesis and application of Ag-Cu bimetallic dendrites. Acta Phys -Chim Sin 29:1712–1718

    CAS  Google Scholar 

  23. Kang YR, Chen FY (2013) Preparation of Ag-Cu bimetallic dendritic nanostructuresand their hydrogen peroxide electroreduction property. J Appl Electrochem 43:667–677

    Article  Google Scholar 

  24. Han M, Liu SL, Zhang LY, Zhang C, Tu WW, Dai ZH, Bao JC (2012) Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction. ACS Appl Mater Interfaces 4:6654–6660

    Article  CAS  Google Scholar 

  25. Current Primary and Scrap Metal Price (2014) http://www.metalprices.com/

  26. Huang YW, Chou TY, Yu GY, Lee SL (2011) Theoretical study of local electronic alloy effects of OOH, OH, and O adsorption on Pt-Pd cluster model. J Phys Chem C 115:9105–9166

    Article  CAS  Google Scholar 

  27. Sepa DB, Vojnovic MV, Damjanovic A (1981) Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim Acta 26:781–793

    Article  CAS  Google Scholar 

  28. Sepa DB, Vojnovic MV, Vracar LM, Damjanovic A (1987) Different views regarding the kinetics and mechanisms of oxygen reduction at Pt and Pd electrodes. Electrochim Acta 32:129–134

    Article  CAS  Google Scholar 

  29. Wang Y, Balbuena PB (2005) Ab initio molecular dynamics simulations of the oxygen reduction reaction on a Pt(111) surface in the presence of hydrated hydronium (H3O)+ (H2O)2: direct or series pathway. J Phys Chem B 109:14896

    Article  CAS  Google Scholar 

  30. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  31. Zhang LP, Niu JB, Dai LM, Xia ZH (2012) Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 28:7542–7550

    Article  CAS  Google Scholar 

  32. Singh P, Buttry DA, Daniel A (2012) Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J Phys Chem C 116:0656–10663

    Google Scholar 

  33. Hsieh CT, Pan C, Chen WY (2011) Synthesis of silver nanoparticles on carbon papers for electrochemical catalysts. J Power Sources 196:6055–6061

    Article  CAS  Google Scholar 

  34. Guo JS, Hsu A, Chu D, Chen RR (2010) Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C 114:4323–4330

    Google Scholar 

  35. Varcoe JR, Slade RCT, Wright GL, Chen YL (2006) Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J Phys Chem B 110:21041–21049

    Article  CAS  Google Scholar 

  36. Sidik RA, Anderson AB (2006) O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J Phys Chem B 110:1787

    Article  CAS  Google Scholar 

  37. Roques J, Anderson AB (2005) Pt3Cr(111) alloy effect on the reversible potential of OOH (ads) formation from O2 (ads) relative to Pt (111). J Fuel Cell Sci Technol 2:86–93

    Article  CAS  Google Scholar 

  38. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  39. Kurak KA, Anderson AB (2009) Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J Phys Chem C 113:6730–6734

    Article  CAS  Google Scholar 

  40. Roques J, Anderson AB (2004) Electrode potential-dependent stages in OHads formation on the Pt3Cr alloy (111) surface. J Electrochem Soc 151:E340–E347

    Article  CAS  Google Scholar 

  41. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Dekker, New York

  42. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys Rev B 59:7413–7421

    Article  Google Scholar 

  43. Delley B (1990) An All-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  44. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  45. Li WY, Chen FY (2014) Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory. Eur Phys J D 68(91):1–11

    Google Scholar 

  46. Li WY, Chen FY (2014) Effect of Cu-doped site and charge on the optical and magnetic properties of 55-atom Ag cluster: a density functional theory study. 81:587–594

  47. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125–1555134

    Article  Google Scholar 

  48. Shin K, Kim DH, Yeo SC, Lee HM (2012) Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study. Catal Today 185:94–98

    Article  CAS  Google Scholar 

  49. Santos E, Schmickler W (2006) d-band catalysis in electrochemistry. ChemPhysChem 7:2282–2285

    Article  CAS  Google Scholar 

  50. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  51. Mueller T (2012) Ab initio determination of structure–property relationships in alloy nanoparticles. Phys Rev B 86:144201

    Article  Google Scholar 

  52. Mokkath JH, Schwingenschlogl U (2013) Tuning the chemical activity through PtAu nanoalloying: a first principles study. J Mater Chem A 1:9885–9888

    Article  CAS  Google Scholar 

  53. Walch S, Dhanda A, Aryanpour M, Pitsch H (2008) Mechanism of molecular oxygen reduction at the cathode of a PEM fuel cell: non-electrochemical reactions on catalytic Pt particles. J Phys Chem C 112:8464–8475

  54. Chen RR, Li HX, Chu D, Wang GF (2009) Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J Phys Chem C 113:20689–20697

    Article  CAS  Google Scholar 

  55. Gong K, Du F, Xia Z, Dustock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  CAS  Google Scholar 

  56. Feng T, Anderson AB (2011) Effective reversible potential, energy loss, and overpotential on platinum fuel cell cathodes. J Phys Chem C 115:4076–4088

    Google Scholar 

  57. Ruvinskiy PS, Bonnefont A, Pham-Huu C, Savinova ER (2011) Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 27:9018–9027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51271148 and 50971100), the Research Fund of State Key Laboratory of Solidification Processing in China (Grant No. 30-TP-2009), and the Aeronautic Science Foundation Program of China (Grant No. 2012ZF53073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqiang Ma or Fuyi Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Chen, F., Zhang, N. et al. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode. J Mol Model 20, 2454 (2014). https://doi.org/10.1007/s00894-014-2454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2454-7

Keyword

Navigation