Skip to main content

Advertisement

Log in

Novel theoretically designed HIV-1 non-nucleoside reverse transcriptase inhibitors derived from nevirapine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A common problem with non-nucleoside reverse transcriptase inhibitors (NNRTIs) of HIV-1 is the emergence of mutations in the HIV-1 RT, in particular Lys103 → Asn (K103N) and Tyr181 → Cys (Y181C), which lead to resistance to this entire class of inhibitors. In this study, we theoretically designed two new non-nucleoside HIV-1 RT inhibitors, Mnev-1 and Mnev-2, derived from nevirapine, in order to reduce the resistance caused by those HIV-1 RT mutations. The binding modes of Mnev-1 and Mnev-2 with the wild-type HIV-1 RT and its mutants (K103N and Y181C) were suggested by molecular docking followed by 20-ns molecular dynamics (MD) simulations in explicit water of those binding complexes (HIV-1 RTs with the new inhibitors). A molecular mechanics/generalized Born surface area (MM/GBSA) calculation was carried out for multiple snapshots extracted from the MD trajectory to estimate the binding free energy. The results of the calculations show that each of the new inhibitors forms a stable hydrogen bond with His235 during the MD simulations, leading to tighter binding of the new inhibitors with their targets. In addition, the repulsive interaction with Cys181 in the Y181C–nevirapine complex is not present in the novel inhibitors. The binding affinities predicted using the MM/GBSA calculations indicate that the new inhibitors could be effective at bypassing the drug resistance of these HIV-1 RT mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parker WB, White EL, Shaddix SC, Ross LJ, Buckheit RW Jr, Germany JM, Secrist JA, Vince R, Shannon WM (1991) Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases alpha, beta, and gamma by the 5′-triphosphates of carbovir, 3′-azido-3′-deoxythymidine, 2′,3′-dideoxyguanosine and 3′-deoxythymidine. A novel RNA template for the evaluation of antiretroviral drugs. J Biol Chem 266:1754–1762

  2. He X, Mei Y, Xiang Y, Zhang DW, Zhang JZH (2005) Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations. Proteins 61:423–432

    Article  CAS  Google Scholar 

  3. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 25:1783–1790

  4. Wang JM, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  5. Mitsuya H, Yarchoan R, Broder S (1990) Molecular targets for AIDS therapy. Science 249:1533–1544

    Article  CAS  Google Scholar 

  6. Katz RA, Skalka AM (1994) The retroviral enzymes. Annu Rev Plant Physiol Plant Mol Biol 63:133–173

    CAS  Google Scholar 

  7. Archer RH, Wisniewski M, Bambara RA, Demeter LM (2001) The Y181C mutant of HIV-1 reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors alters the size distribution of RNase H cleavages. Biochemistry 40:4087–4095

    Article  CAS  Google Scholar 

  8. De Clercq E (1996) Non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of human immunodeficiency virus type 1 (HIV-1) infections: strategies to overcome drug resistance development. Med Res Rev 16:125–157

    Article  Google Scholar 

  9. Kar P, Knecht V (2012) Energetics of mutation-induced changes in potency of lersivirine against HIV-1 reverse transcriptase. J Phys Chem B 116:6269–6278

    Article  CAS  Google Scholar 

  10. Richman DD, Shih CK, Lowy I, Rose J, Prodanovich P, Goff S, Griffin J (1991) Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc Natl Acad Sci USA 88:11241–11245

  11. Richman DD, Havlir D, Corbeil J, Looney D, Ignacio C, Spector SA, Sullivan J, Cheeseman S, Barringer K, Pauletti D (1994) Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J Virol 68:1660–1666

    CAS  Google Scholar 

  12. Udier-Blagovic M, Tirado-Rives J, Jorgensen WL (2003) Validation of a model for the complex of HIV-1 reverse transcriptase with nonnucleoside inhibitor TMC125. J Am Chem Soc 125:6016–6017

    Article  CAS  Google Scholar 

  13. Nikolenko GN, Kotelkin AT, Oreshkova SF, Ilyichev AA (2011) Mechanisms of HIV-1 drug resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Mol Biol 45:93–109

    Article  CAS  Google Scholar 

  14. De Clercq E (2002) New developments in anti-HIV chemotherapy. Biochim Biophys Acta Mol Basis Dis 1587:258–275

    Article  Google Scholar 

  15. Sardana VV, Emini EA, Gotlib L, Graham DJ, Lineberger DW, Long WJ, Schlabach AJ, Wolfgang JA, Condra JH (1992) Functional analysis of HIV-1 reverse transcriptase amino acids involved in resistance to multiple nonnucleoside inhibitors. J Biol Chem 267:17526–17530

    CAS  Google Scholar 

  16. Richman DD (1993) Resistance of clinical isolates of human immunodeficiency virus to antiretroviral agents. Antimicrob Agents Chemother 37:1207–1213

    Article  CAS  Google Scholar 

  17. Schinazi RF, Larder BA, Mellors JW (2000) Mutations in retroviral genes associated with drug resistance: 2000–2001 update. Int Antivir News 6:65–91

    Google Scholar 

  18. Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS (1995) L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 39:2602–2605

    Article  CAS  Google Scholar 

  19. Zhan P, Liu XY, Li ZY, Pannecouque C, De Clercq E (2009) Design strategies of novel NNRTIs to overcome drug resistance. Curr Med Chem 16:3903–3917

    Article  CAS  Google Scholar 

  20. Song Y, Zhan P, Kang DW, Li X, Tian Y, Li ZY, Chen XW, Chen WM, Pannecouque C, De Clercq E, Liu XY (2013) Discovery of novel pyridazinylthioacetamides as potent HIV-1 NNRTIs using a structure-based bioisosterism approach. Med Chem Commun 4:810–816

  21. Parrish J, Tong L, Wang M, Chen XW, Lansdon EB, Cannizzaro C, Zheng XB, Desai MC, Xu LH (2013) Synthesis and biological evaluation of phosphonate analogues of nevirapine. Bioorg Med Chem Lett 23:1493–1497

    Article  CAS  Google Scholar 

  22. Rizzo RC, Tirado-Rives J, Jorgensen WL (2001) Estimation of binding affinities for HEPT and nevirapine analogues with HTV-1 reverse transcriptase via Monte Carlo simulations. J Med Chem 44:145–154

    Article  CAS  Google Scholar 

  23. Rizzo RC, Udier-Blagovic M, Wang DP, Watkins EK, Smith MBK, Smith RH, Tirado-Rives J, Jorgensen WL (2002) Prediction of activity for nonnucleoside inhibitors with HIV-1 reverse transcriptase based on Monte Carlo simulations. J Med Chem 45:2970–2987

    Article  CAS  Google Scholar 

  24. Wang DP, Rizzo RC, Tirado-Rives J, Jorgensen WL (2001) Antiviral drug design: computational analyses of the effects of the L100I mutation for HIV-RT on the binding of NNRTIs. Bioorg Med Chem Lett 11:2799–2802

    Article  CAS  Google Scholar 

  25. Zhang DW, Zhang JZH (2003) Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy. J Chem Phys 119:3599–3605

  26. Zhang DW, Chen XH, Zhang JZH (2003) Molecular caps for full quantum mechanical computation of peptide–water interaction energy. J Comput Chem 24:1846–1852

  27. Chen XH, Zhang DW, Zhang JZH (2004) Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules. J Chem Phys 120:839–844

    Article  CAS  Google Scholar 

  28. Zhang DW, Zhang JZH (2004) Full ab initio computation of protein–water interaction energies. J Theor Comput Chem 3:43–49

  29. Zhang DW, Xiang Y, Zhang JZH (2003) New advance in computational chemistry: full quantum mechanical ab initio computation of streptavidin–biotin interaction energy. J Phys Chem B 107:12039–12041

  30. Zhang DW, Xiang Y, Gao AM, Zhang JZH (2004) Quantum mechanical map for protein–ligand binding with application to beta-trypsin/benzamidine complex. J Chem Phys 120:1145–1148

  31. Mei Y, He X, Xiang Y, Zhang DW, Zhang JZH (2005) Quantum study of mutational effect in binding of efavirenz to HIV-1 RT. Proteins 59:489–495

    Article  CAS  Google Scholar 

  32. Mei Y, He X, Ji CG, Zhang DW, John ZHZ (2012) A fragmentation approach to quantum calculation of large molecular systems. Prog Chem 24:1058–1064

    CAS  Google Scholar 

  33. Wang XW, Liu JF, Zhang JZH, He X (2013) Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy. J Phys Chem A 117:7149–7161

    Article  CAS  Google Scholar 

  34. He X, Zhang JZH (2006) The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. J Chem Phys 124:184703

    Article  Google Scholar 

  35. He X, Zhang JZH (2005) A new method for direct calculation of total energy of protein. J Chem Phys 122:031103

    Article  Google Scholar 

  36. He X, Merz KM (2010) Divide and conquer Hartree–Fock calculations on proteins. J Chem Theory Comput 6:405–411

  37. Wang JM, Hou TJ, Xu XJ (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput Aided Drug Des 2:287–306

  38. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  39. Liu JF, He X, Zhang JZH (2013) Improving the scoring of protein–ligand binding affinity by including the effects of structural water and electronic polarization. J Chem Inf Model 53:1306–1314

  40. Weis A, Katebzadeh K, Soderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606

    Article  CAS  Google Scholar 

  41. Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30:211–243

  42. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized Born model suitable for macromolecules. J Phys Chem B 104:3712–3720

  43. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized Born model. Proteins 55:383–394

  44. Hou TJ, Wang JM, Li YY, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

  45. Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810

    CAS  Google Scholar 

  46. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  47. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

  48. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

  49. Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  50. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174

  51. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  52. Cornell WD, Cieplak P, Bayly CI, Kollmann PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford

  54. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10093

    Article  CAS  Google Scholar 

  55. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

  56. Pastor RW, Brooks BR, Szabo A (1988) An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol Phys 65:1409–1419

  57. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

  58. Genheden S, Kuhn O, Mikulskis P, Hoffmann D, Ryde U (2012) The normal-mode entropy in the MM/GBSA method: effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 52:2079–2088

    Article  CAS  Google Scholar 

  59. Schaefer W, Friebe WG, Leinert H, Mertens A, Poll T, Saal WVD, Zilch H, Nuber B, Ziegler ML (1993) Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations. J Med Chem 36:726–732

  60. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  61. Wang JM, Kang XS, Kuntz ID, Kollman PA (2005) Hierarchical database screenings for HIV-1 reverse transcriptase using a pharmacophore model, rigid docking, solvation docking, and MM-PB/SA. J Med Chem 48:2432–2444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 10974054, 20933002 and 21303057) and Shanghai PuJiang program (09PJ1404000). X.H. is also supported by the Specialized Research Fund for the Doctoral Program of Higher Education (grant no. 20130076120019) and the Fundamental Research Funds for the Central Universities. We thank the Supercomputer Center of East China Normal University for providing us with computational time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., He, X. & Zhang, J.Z.H. Novel theoretically designed HIV-1 non-nucleoside reverse transcriptase inhibitors derived from nevirapine. J Mol Model 20, 2451 (2014). https://doi.org/10.1007/s00894-014-2451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2451-x

Keywords

Navigation