Skip to main content
Log in

Probing the electronic structures and properties of neutral and charged arsenic sulfides [As n S2 (−1,0,+1), n = 1–6] with Gaussian-3 theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and energies of neutral and charged arsenic sulfides As n S2 (−1,0,+1) (n = 1–6) were investigated systematically by means of the Gaussian-3 (G3) scheme. The ground-state structures of these species are presented. The ground-state structures of As n S2 can be viewed as the lowest-energy structure of neutral As n+1S by replacing an As atom with a S atom. To be more precise, the ground-state structures of As n S2 can be viewed as the lowest-energy structure of neutral As n+2 by replacing two As atoms with two S atoms, in which the feature of sulfur bonding is edge-bridging. No rule could be found for the ground state structure of As n S2 and As n S2 +. In As n S2 , the feature of sulfur bonding is either edge-bridging or a terminal atom, and in AsnS2 + the feature of sulfur bonding is edge-bridging analogous to As n S2. The potential energy surfaces of As4S2 and its charged species are very flat. So co-existence for many isomers of As4S2 and its charged species are possible. The reliable adiabatic electron affinities (AEAs) and adiabatic ionization potentials (AIPs) of As n S2 were estimated. There are odd-even alternations in both AEAs and AIPs as a function of size of As n S2. The dissociation energies (DEs) of S [and/or its ion S(−/+)] from As n S2 clusters and their ions were calculated and used to reveal relative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prokeš L, Peña-Médez EM, Conde JE, Panyala NR, Alberti M, Havel J (2014) Rapid Commun Mass Spectrom 28:577–586

    Article  Google Scholar 

  2. Yang J, Kang Y, Wang X, Bai X (2013) J Mol Model 19:5199–5211

    Article  CAS  Google Scholar 

  3. Bai X, Zhang Q, Gao A, Yang J (2013) Comput Theor Chem 1009:94–102

    Article  CAS  Google Scholar 

  4. Bai X, Zhang Q, Yang J, Ning H (2012) J Phys Chem A 116:9382–9390

    Article  CAS  Google Scholar 

  5. Liang G, Wu Q, Yang J (2011) J Phys Chem A 115:8302–8309

    Article  CAS  Google Scholar 

  6. Walter CW, Gibson ND, Field RL, Snedden AP, Shapiro JZ, Janczak CM, Hanstorp D (2009) Phys Rev A 80:014501-1–014501-4

  7. Kornath AJ, Kaufmann A, Cappellacci S (2009) J Mol Spectrosc 255:189–193

    Article  CAS  Google Scholar 

  8. Zhao J, Zhou X, Chen X, Wang J, Jellinek (2006) J Phys Rev B 73: 115418-1–115418-10

  9. Feller D, Vasiliu M, Grant DJ, Dixon DA (2011) J Phys Chem A 115:14667–14676

    Article  CAS  Google Scholar 

  10. Zhai H-J, Wang L-S, Kuznetsov AE, Boldyrev AI (2002) J Phys Chem A 106:5600–5606

    Article  CAS  Google Scholar 

  11. Lippa TP, Xu S-J, Lyapustina A, Nilles JM, Bowen KH (1998) J Chem Phys 109:10727–10731

    Article  CAS  Google Scholar 

  12. Alcamí M, Mó O, Yáňez M (1998) J Chem Phys 108:8957–8963

    Article  Google Scholar 

  13. Ballone P, Jones RO (1994) J Chem Phys 100:4941–4946

    Article  CAS  Google Scholar 

  14. Zimmerman JA, Bach SBH, Watson CH, Eyler JR (1991) J Phys Chem 95:98–104

    Article  CAS  Google Scholar 

  15. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  16. Pollzzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Nature 454:505–509

    Article  Google Scholar 

  17. Špalt Z, Alberti M, Peña-Méndez E, Havel J (2005) Polyhedron 24:1417–1424

    Article  Google Scholar 

  18. Verger F, Nazabal V, Colas F, Nĕmec P, Cardinaud C, Baudet E, Chahal R, Rinnert E, Boukerma K, Peron I, Deputier S, Guilloux-Viry M, Guin JP, Lhermite H, Moreac A, Compère C, Bureau B (2013) Opt Mater Express 3:2112–2131

    Article  CAS  Google Scholar 

  19. San-Román-Alerigi DP, Anjum DH, Zhang Y, Yang X, Benslimane A, Ng TK, Hedhili MN, Alsunaidi M, Ooi BS (2013) J Appl Phys 113: 044116-1–044116-10

  20. Kovalskiy A, Neilson JR, Miller AC, Miller FC, Vlcek M, Jain H (2008) Thin Solid Films 516:7511–7518

    Article  CAS  Google Scholar 

  21. Ramírez-Galicia G, Peña-Méndez EM, Pangavhane SD, Alberti M, Havel J (2010) Polyhedron 29:1567–1574

    Article  Google Scholar 

  22. Naumov P, Makreski P, Jovanovski G (2007) Inorg Chem 46:10624–10631

    Article  CAS  Google Scholar 

  23. Holomb R, Veres M, Mitsa V (2009) J Optoelectron Adv M 11:917–923

    CAS  Google Scholar 

  24. Banerjee A, Jensen JO, Jensen JL (2003) J Mol Struct (Theochem) 626:63–75

    Article  CAS  Google Scholar 

  25. Pangavhane SD, Houška J, Wágner T, Pavlišta M, Janča J, Havel J (2010) Rapid Commun Mass Spectrom 24:95–102

    Article  CAS  Google Scholar 

  26. Neilson JR, Kovalskiy A, Vlček M, Jain H, Miller F (2007) J Non-Cryst Solids 353:1427–1430

    Article  CAS  Google Scholar 

  27. Nguyen VQ, Sanghera JS, Cole B, Pureza P, Kung FH, Aggarwal ID (2002) J Am Ceram Soc 85:2056–2058

    Article  CAS  Google Scholar 

  28. Trentelman K, Stodulski L, Pavlosky M (1996) Anal Chem 68:1755–1761

    Article  CAS  Google Scholar 

  29. Kyono A (2007) J Photochem Photobiol A Chem 189:15–22

    Article  CAS  Google Scholar 

  30. Bonazzi P, Menchetti S, Pratesi G, Muniz-Miranda M, Sbrana G (1996) Am Mineral 81:874–880

    CAS  Google Scholar 

  31. Naumov P, Makreski P, Petruševski G, Runčevski T, Jovanovski G (2010) J Am Chem Soc 132:11398–11401

    Article  CAS  Google Scholar 

  32. Rogstad A (1972) J Mol Struct 14:421–426

    Article  CAS  Google Scholar 

  33. Slade ML, Zallen R (1979) Solid State Commun 30:367–360

    Article  Google Scholar 

  34. Onari S, Asai K, Arai T (1985) J Non-Cryst Solids 76:243–251

    Article  CAS  Google Scholar 

  35. Billes F, Mitsa V, Fejes I, Mateleshko N, Fejsa I (1999) J Mol Struct 513:109–115

    Article  CAS  Google Scholar 

  36. Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectrochim Acta A 52:1391–1401

    Article  Google Scholar 

  37. Pagliai M, Bonazzi P, Bindi L, Muniz-Miranda M, Cardini G (2011) J Phys Chem A 115:4558–4562

    Article  CAS  Google Scholar 

  38. Brittain RD, Lau KH, Hildenbrand DL (1983) J Electrochem Soc 130:1206–1210

    Article  CAS  Google Scholar 

  39. Janai M, Rudman PS (1978) J Non-Cryst Solids 27:67–73

    Article  CAS  Google Scholar 

  40. Espeau P, Tamarit JL, Barrio M, López DÓ, Perrin MA, Céolin R (2006) Chem Mater 18:3821–3826

    Article  CAS  Google Scholar 

  41. Lau KH, Brittaln RD, Hlldenbrand DL (1982) J Phys Chem 86:4429–4432

    Article  CAS  Google Scholar 

  42. Munir ZA, Street GB, Winters HF (1971) J Chem Phys 55:4520–4527

    Article  CAS  Google Scholar 

  43. Brunetti B, Piacente V, Scardala P (2007) J Chem Eng Data 52:1343–1346

    Article  CAS  Google Scholar 

  44. Babić D, Rabii S (1988) Phys Rev B 38:10490–10498

    Article  Google Scholar 

  45. Babić D, Rabii S, Bernholc J (1989) Phys Rev B 39:10831–10838

    Article  Google Scholar 

  46. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  47. Curtiss LA, Redfern PC, Rassolov V, Kedziora G, Pople JA (2001) J Chem Phys 114:9287–9295

    Article  CAS  Google Scholar 

  48. Hao D, Liu J, Yang J (2008) J Phys Chem A 112:10113–10119

    Article  CAS  Google Scholar 

  49. Fan H, Yang J, Lu W, Ning H, Zhang Q (2010) J Phys Chem A 114:1218–1223

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. (2010) Gaussian 09 revision C.01, Gaussian Inc. Wallingford, CT

  51. Yang J, Bai X, Li C, Xu W (2005) J Phys Chem A 109:5717–5723

    Article  CAS  Google Scholar 

  52. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994–10005

    Article  CAS  Google Scholar 

  53. Deakyne CA, Li L, Zheng WC, Xu DY, Liebman JF (2003) Int J Quantum Chem 95:713–718

    Article  CAS  Google Scholar 

  54. Deakyne CA, Li L, Zheng WC, Xu DY, Liebman JF (2002) J Chem Thermodyn 34:185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant (No, 21263010) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jucai Yang or Hongmei Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Yang, J. & Ning, H. Probing the electronic structures and properties of neutral and charged arsenic sulfides [As n S2 (−1,0,+1), n = 1–6] with Gaussian-3 theory. J Mol Model 20, 2443 (2014). https://doi.org/10.1007/s00894-014-2443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2443-x

Keywords

Navigation