Skip to main content
Log in

Deformation density and energy decomposition to describe interactions between (η5-C5H5)M and highly reactive molecules C4H4 and (C3H3)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using DFT calculations, an energy decomposition analysis (EDA) combined with natural orbitals for chemical valence (NOCV), EDA-NOCV approach was used to describe the nature of the interaction between η5-cyclopentadienyl metal complexes (η5–C5H5)M, with M=Co, Rh, and cyclobutadiene (Cb) and cyclopropenyl anion (C3H3) molecules, which are highly reactive molecules in their free state. EDA-NOCV draws a covalent picture for these interactions. With this interpretation of interactions, the character of aromaticity could be the result of the delocalization of six electrons in π orbitals of the (η5–C5H5)M fragment and Cb/C3H3 −1 ligand. This description of the bonding interaction might also justify the experimental observation that, in complexes of CpM-Cb (M=Co, Rh), the viability of the Friedel-Crafts acylation and other electrophilic substitutions on the four-membered ring is greater than that of the five-membered ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frenklach M (2002) Phys Chem Chem Phys 4:2028–2037

    Article  CAS  Google Scholar 

  2. Richter H, Howard JB (2002) Phys Chem Chem Phys 4:2038–2055

    Article  CAS  Google Scholar 

  3. Nguyen TL, Mebel AM, Kaiser RI (2001) J Phys Chem A 105:3284–3299

    CAS  Google Scholar 

  4. Marsden BG (1974) Annu Rev Astron Astrophys 2:1–21

    Google Scholar 

  5. Thaddeus P, Vrtilek J, Gottlieb C (1985) Astrophys J 299:L63–L66

    Article  CAS  Google Scholar 

  6. Minsek DW, Chen P (1990) J Phys Chem 94:8399–8401

    CAS  Google Scholar 

  7. Jacox ME, Milligan DE (1974) Chem Phys 4:45–61

    CAS  Google Scholar 

  8. Huang J, Graham W (1990) J Chem Phys 93:1583–1596

    CAS  Google Scholar 

  9. Hughes RP, Tucker DS, Rheingold AL (1993) Organometallics 12:3069–3074

    Article  CAS  Google Scholar 

  10. Lo Y-H, Lin Y-C, Lee G-H, Wang Y (1999) Organometallics 18:982–988

    Article  CAS  Google Scholar 

  11. Ting P-C, Lin Y-C, Cheng M-C, Wang Y (1994) Organometallics 13:2150–2152

    Article  CAS  Google Scholar 

  12. Rausch MD, Tuggle R, Weaver DL (1970) J Am Chem Soc 92:4981–4982

    Article  CAS  Google Scholar 

  13. Tuggle R, Weaver D (1971) Inorg Chem 10:2599–2603

    Article  CAS  Google Scholar 

  14. Chiang T, Kerber RC, Kimball SD, Lauher JW (1979) Inorg Chem 18:1687–1691

    Article  CAS  Google Scholar 

  15. Lichtenberger DL, Hoppe ML, Subramanian L, Kober EM, Hughes RP et al (1993) Organometallics 12:2025–2031

    Article  CAS  Google Scholar 

  16. Longuet-Higgins H, Orgel L (1956) J Chem Soc 1956:1969–1972

  17. Criegee R, Schröder G (1959) Angew Chem 71:70–71

    Article  CAS  Google Scholar 

  18. Emerson G, Watts L, Pettit R (1965) J Am Chem Soc 87:131–133

    Article  CAS  Google Scholar 

  19. Fitzpatrick J, Watts L, Emerson G, Pettit R (1965) J Am Chem Soc 87:3254–3255

    Article  CAS  Google Scholar 

  20. Kealy T, Pauson P (1951) Nature 168:1039–1040

    Article  CAS  Google Scholar 

  21. Miller SA, Tebboth JA, Tremaine JF (1952) J Chem Soc 1952:632–635

  22. Nakamura A, Hagihara N (1961) Bull Chem Soc Jpn 34:452–453

    Article  CAS  Google Scholar 

  23. Rausch MD, Genetti R (1970) J Org Chem 35:3888–3897

    Article  CAS  Google Scholar 

  24. Efraty A (1977) Chem Rev 77:691–744

    Article  CAS  Google Scholar 

  25. Gleiter R (1992) Angew Chem Int Ed 31:27–44

    Article  Google Scholar 

  26. Schaefer C, Werz DB, Staeb TH, Gleiter R, Rominger F (2005) Organometallics 24:2106–2113

    Article  CAS  Google Scholar 

  27. Gleiter R, Pflaesterer G (1993) Organometallics 12:1886–1889

    Article  CAS  Google Scholar 

  28. Gleiter R, Langer H, Nuber B (1994) Angew Chem Int Ed 33:1272–1274

    Article  Google Scholar 

  29. Gleiter R, Langer H, Schehlmann V, Nuber B (1995) Organometallics 14:975–986

    Article  CAS  Google Scholar 

  30. Schimanke H, Gleiter R (1998) Organometallics 17:275–277

    Article  CAS  Google Scholar 

  31. Gath S, Gleiter R, Rominger F, Bleiholder C (2007) Organometallics 26:644–650

    Article  CAS  Google Scholar 

  32. Fritch JR, Vollhardt KPC (1979) Angew Chem Int Ed 18:409–411

    Article  Google Scholar 

  33. Ville G, Vollhardt KPC, Winter MJ (1981) J Am Chem Soc 103:5267–5269

    Article  CAS  Google Scholar 

  34. Ville GA, Vollhardt KPC, Winter MJ (1984) Organometallics 3:1177–1187

    Article  CAS  Google Scholar 

  35. Laskoski M, Morton JG, Smith MD, Bunz UH (2001) Chem Commun 2001:2590–2591

  36. Laskoski M, Morton JG, Smith MD, Bunz UH (2002) J Organomet Chem 652:21–30

    Article  CAS  Google Scholar 

  37. Laskoski M, Morton JG, Smith MD, Bunz UH (2002) Angew Chem Int Ed 41:2378–2382

    Article  CAS  Google Scholar 

  38. Laskoski M, Morton JG, Smith MD, Bunz UH (2003) J Organomet Chem 673:25–39

    Article  CAS  Google Scholar 

  39. Sasaki S, Tanabe Y, Yoshifuji M (2002) Chem Commun 2002:1876–1877

  40. Sasaki S, Kato K, Tanabe Y, Yoshifuji M (2004) Chem Lett 33:1004–1005

    Article  CAS  Google Scholar 

  41. Harcourt EM, Yonis SR, Lynch DE, Hamilton DG (2008) Organometallics 27:1653–1656

    Article  CAS  Google Scholar 

  42. Taylor CJ, Motevalli M, Richards CJ (2006) Organometallics 25:2899–2902

    Article  CAS  Google Scholar 

  43. Bertrand G, Tortech L, Fichou D, Malacria M, Aubert C, Gandon V (2011) Organometallics 31:126–132

    Article  Google Scholar 

  44. Veiros LF, Dazinger G, Kirchner K, Calhorda MJ, Schmid R (2004) Chem Eur J 10:5860–5870

    Article  CAS  Google Scholar 

  45. Hardesty JH, Koerner JB, Albright TA, Lee G-Y (1999) J Am Chem Soc 121:6055–6067

    Article  CAS  Google Scholar 

  46. Weng C-M, Hong F-E (2011) Organometallics 30:3740–3748

    Article  CAS  Google Scholar 

  47. Siebert W, Kudinov AR, Zanello P, Antipin MY, Scherban VV, Romanov AS, Muratov DV, Starikova ZA, Corsini M (2009) Organometallics 28:2707–2715

    Article  CAS  Google Scholar 

  48. Rosenblum M, North B (1968) J Am Chem Soc 90:1060–1061

    Article  CAS  Google Scholar 

  49. Rosenblum M, North B, Wells D, Giering W (1972) J Am Chem Soc 94:1239–1246

    Article  CAS  Google Scholar 

  50. Gardner SA, Rausch MD (1973) J Organomet Chem 56:365–368

    Article  CAS  Google Scholar 

  51. Mousavi M, Frenking G (2013) Organometallics 32:1743–1751

    Article  CAS  Google Scholar 

  52. Brett CM, Bursten BE (2004) Polyhedron 23:2993–3002

    Article  CAS  Google Scholar 

  53. Bursten BE, Fenske RF (1979) Inorg Chem 18:1760–1765

    Article  CAS  Google Scholar 

  54. Lichtenberger DL, Fenske RF (1976) J Am Chem Soc 98:50–63

    Article  CAS  Google Scholar 

  55. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M et al (2009) Gaussian 09 [Revision A. 02]. Gaussian Inc., Wallingford

    Google Scholar 

  56. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  57. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  58. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  59. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  60. Mitoraj MP, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962–975

    CAS  Google Scholar 

  61. Kurczab R, Mitoraj MP, Michalak A, Ziegler T (2010) J Phys Chem A 114:8581–8590

    Article  CAS  Google Scholar 

  62. Mitoraj M, Michalak A (2008) J Mol Model 14:681–687

    Article  CAS  Google Scholar 

  63. Mitoraj M, Michalak A (2007) J Mol Model 13:347–355

    Article  CAS  Google Scholar 

  64. Mitoraj M, Michalak A (2007) Organometallics 26:6576–6580

    Article  CAS  Google Scholar 

  65. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ et al (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  66. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    CAS  Google Scholar 

  67. ADF S, ADF® molecular modeling suite, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  68. Krijn J, Baerends EJ (1984) Internal report (in Dutch)

  69. Chang C, Pelissier M, Durand P (1986) Phys Scr 34:394

    Article  CAS  Google Scholar 

  70. Heully J-L, Lindgren I, Lindroth E, Lundqvist S, Martensson-Pendrill A-M (1986) J Phys B: At Mol Phys 19:2799

    Article  CAS  Google Scholar 

  71. van Lenthe E, Baerends E-J, Snijders JG (1993) J Chem Phys 99:4597–4610

    Google Scholar 

  72. Morokuma K (2003) J Chem Phys 55:1236–1244

    Google Scholar 

  73. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  74. Nalewajski R, Köster A, Jug K (1993) Theor Chim Acta 85:463–484

    Article  CAS  Google Scholar 

  75. Nalewajski RF, Mrozek J (1994) Int J Quantum Chem 51:187–200

    Article  CAS  Google Scholar 

  76. Nalewajski RF, Formosinho SJ, Varandas AJ, Mrozek J (1994) Int J Quantum Chem 52:1153–1176

    Article  CAS  Google Scholar 

  77. Nalewajski RF, Mrozek J, Mazur G (1996) Can J Chem 74:1121–1130

    Article  CAS  Google Scholar 

  78. Nalewajski RF, Mrozek J, Michalak A (1997) Int J Quantum Chem 61:589–601

    Article  CAS  Google Scholar 

  79. Michalak A, DeKock RL, Ziegler T (2008) J Phys Chem A 112:7256–7263

    CAS  Google Scholar 

  80. Riley PE, Davis RE (1976) J Organomet Chem 113:157–166

    Article  CAS  Google Scholar 

  81. Jemmis ED, Alexandratos S (1978) Schleyer PvR, Streitwieser Jr A, Schaefer III HF. J Am Chem Soc 100:5695–5700

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. acknowledges the Iranian Ministry of Science and Technology for sponsoring her sabbatical leave. The calculations were carried out by the Erwin Computing Center in Philipps-Universität Marburg (Germany). We are deeply grateful to Prof. G. Frenking for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Mousavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 480 kb)

Figure S2

(DOCX 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, M., Pakiari, A.H. Deformation density and energy decomposition to describe interactions between (η5-C5H5)M and highly reactive molecules C4H4 and (C3H3) . J Mol Model 20, 2418 (2014). https://doi.org/10.1007/s00894-014-2418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2418-y

Keywords

Navigation