Skip to main content
Log in

Multi-reference Hartree-Fock configuration interaction calculations of LiH and Be using a new double-zeta atomic base

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we propose new double-zeta atomic bases for the Li and Be atoms. These were obtained by applying the Hartree-Fock-Gauss generalized simulated annealing (GSA) method—a modified form of the GSA algorithm. The new bases were generated through optimization of the atomic electronic energy functional with regards to the linear combination of atomic orbitals-molecular orbital (LCAO-MO) coefficients, and exponent and contraction coefficients of the primitive Gaussian functions, simultaneously. These new bases were tested by performing calculations of the ground state energy of the Be atom, and the ground state energy and permanent electrical dipole moment of the LiH molecule, using the multi-reference Hartree-Fock (HF) configuration interaction method—a multi-reference method based on multiple HF solutions. In addition, multi-reference HF configuration interaction calculations were performed for the Be atom using the standard double-zeta, triple-zeta and polarized double-zeta bases. With the new double-zeta bases and with reduced multi-reference HF bases, it was possible to obtain lower energies than those obtained with the full configuration interaction calculations using the standard double-zeta bases and dipole moment values in close agreement with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this work all calculations for the LiH molecule were performed using the new dz atomic base for the Li atom and the standard dz atomic base for the H atom.

  2. The sets of LCAO-MO coefficients for the HF solutions can be obtained on request.

  3. The MRHF bases employed in the MRHFCI calculations can be obtained on request.

References

  1. de Andrade MD, Nascimento MAC, Mundim KC, Sobrinho AMC, Malbouisson LAC (2008) Atomic basis sets optimization using the generalized simulated annealing approach: new basis sets for the first row elements. Int J Quantum Chem 108:2486–2498. doi:10.1002/qua.21666

    Article  Google Scholar 

  2. Tsallis C, Stariolo DA (1996) Generalized simulated annealing. Physica A 233:395–406. doi:10.1016/s0378-4371(96)00271-3

    Article  Google Scholar 

  3. Malbouisson LAC, Martins MGR, Makiuchi N (2006) One-electron properties using a CI method based on multiple Hartree-Fock solutions. Int J Quantum Chem 106:2772–2778. doi:10.1002/qua.21035

    Article  CAS  Google Scholar 

  4. Sobrinho AMC, Nascimento MAC, de Andrade MD, Malbouisson LAC (2008) Molecular one-electron properties using the multireference Hartree-Fock CI method. Int J Quantum Chem 108:2595–2602. doi:10.1002/qua.21672

    Article  CAS  Google Scholar 

  5. Malbouisson LAC, de Andrade MD, Sobrinho AMC (2012) Quadrupole moment of the hydrogen fluoride using the multireference Hartree-Fock CI method. Int J Quantum Chem 112:3409–3413. doi:10.1002/qua.24272

    Article  CAS  Google Scholar 

  6. Gorá RW, Zalesny R, Kozłowska J, Naciazek P, Roztoczynska A, Strasburger K, Bartkowiak W (2012) Electric dipole (hyper)polarizabilities of spatially confined LiH molecule. J Chem Phys 137:094307. doi:10.1063/1.4748144

    Google Scholar 

  7. Moret MA, Pascutti PG, Bisch PM, Mundim KC (1998) Stochastic molecular optimization using generalized simulated annealing. J Comput Chem 19:647–657. doi:10.1002/(sici)1096-987x(19980430)19:6<647::aid-jcc6>3.3.co;2-e

    Article  CAS  Google Scholar 

  8. Moret MA, Bisch PM, Mundim KC, Pascutti PG (2002) New stochastic strategy to analyze helix folding. Biophys J 82:1123–1132. doi:10.1016/s0006-3495(02)75471-4

    Article  CAS  Google Scholar 

  9. de Andrade MD, Mundim KC, Malbouisson LAC (2005) GSA algorithm applied to electronic structure: hartree-fock-GSA method. Int J Quantum Chem 103:493–499. doi:10.1002/qua.20580

    Article  Google Scholar 

  10. de Andrade MD, Nascimento MAC, Mundim KC, Malbouisson LAC (2006) GSA algorithm applied to electronic structure II: UHF-GSA method. Int J Quantum Chem 106:2700–2705. doi:10.1002/qua.21080

    Article  Google Scholar 

  11. Adams WH (1962) Stability of Hartree-Fock states. Phys Rev 127:1650–1658. doi:10.1103/physrev.127.1650

    Article  CAS  Google Scholar 

  12. Stanton RE (1968) Multiple solutions to the Hartree-Fock problem. I. General treatment of two-electron closed-shell systems. J Chem Phys 48:257–262. doi:10.1063/1.1667913

    CAS  Google Scholar 

  13. Malbouisson LAC, Vianna JDM (1990) J Chim Phys Phys Chim Biol 87:2017

    Google Scholar 

  14. Barbosa AGH, Nascimento MAC (2002) Generalized multistructural method: theoretical foundations and applications. In: Cooper DL (ed) Valence bond theory. Elsevier, Amsterdam, pp 117–143. doi:10.1016/S1380-7323(02)80006-1

    Chapter  Google Scholar 

  15. Bundgen P, Grein F, Thakkar AJJ (1995) Dipole and quadrupole moments of small molecules. An ab initio study using perturbatively corrected, multi-reference, configuration interaction wave functions. J Mol Struct THEOCHEM 334:7–13. doi:10.1016/0166-1280(94)03974-p

    Article  Google Scholar 

  16. Palmieri P, Tarroni R, Mitrushenkov AO, Rettrup S (1998) Efficient truncation strategies for multi-reference configuration interaction molecular energies and properties. J Chem Phys 109:7085–7092. doi:10.1063/1.477391

    CAS  Google Scholar 

  17. Ayala PY, Schlegel HB (1998) A nonorthogonal CI treatment of symmetry breaking in sigma formyloxyl radical. J Chem Phys 108:7560–7567. doi:10.1063/1.476190

    CAS  Google Scholar 

  18. Dunning TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Shaefer HF III (ed) Methods of electronic structure theory. Springer New York, pp 1–27. doi:10.1007/978-1-4757-0887-5_1

    Chapter  Google Scholar 

  19. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89. doi:10.1103/revmodphys.23.69

    Article  CAS  Google Scholar 

  20. Pople JA, Nesbet RK (1954) Self-consistent orbitals for radicals. J Chem Phys 22:571–572. doi:10.1063/1.1740120

    CAS  Google Scholar 

  21. Pulay P (1980) Convergence acceleration of iterative sequences. The case of SCF iteration. Chem Phys Lett 73:393–398. doi:10.1016/0009-2614(80)80396-4

    CAS  Google Scholar 

  22. Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3:556–560. doi:10.1002/jcc.540030413

    Article  CAS  Google Scholar 

  23. Kudin KN, Scuseria GE, Cancès E (2002) A black-box self-consistent field convergence algorithm: one step closer. J Chem Phys 116:8255–8261. doi:10.1063/1.1470195

    CAS  Google Scholar 

  24. Brown KM (1969) A quadratically convergent newton-like method based upon gaussian elimination. SIAM J Numer Anal 6:560–569. doi:10.1137/0706051

    Article  Google Scholar 

  25. Rothstein E (1969) Molecular constants of lithium hydrides by the molecular-beam electric resonance method. J Chem Phys 5:1899–1900. doi:10.1063/1.1671294

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Augusto Carvalho Malbouisson.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cerqueira Sobrinho, A.M., de Andrade, M.D., Nascimento, M.A.C. et al. Multi-reference Hartree-Fock configuration interaction calculations of LiH and Be using a new double-zeta atomic base. J Mol Model 20, 2382 (2014). https://doi.org/10.1007/s00894-014-2382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2382-6

Keywords

Navigation